qtsoundmodem/ax25_mod.c

1744 lines
41 KiB
C
Raw Permalink Normal View History

2023-09-04 19:06:44 +01:00
/*
Copyright (C) 2019-2020 Andrei Kopanchuk UZ7HO
This file is part of QtSoundModem
QtSoundModem is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
QtSoundModem is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with QtSoundModem. If not, see http://www.gnu.org/licenses
*/
// UZ7HO Soundmodem Port by John Wiseman G8BPQ
#include "UZ7HOStuff.h"
// I assume this modulates (and sends?} frames
int RSEncode(UCHAR * bytToRS, UCHAR * RSBytes, int DataLen, int RSLen);
//unit ax25_mod;
//interface
//uses sysutils,classes,math
extern int SampleNo;
extern BOOL KISSServ;
extern TStringList KISS_acked[];
extern TStringList KISS_iacked[];
extern UCHAR modem_mode[];
#define sbc 175
extern single ch_offset[4];
#define COS45 0.70710676908493f
#define TX_SILENCE 0
#define TX_DELAY 1
#define TX_TAIL 2
#define TX_NO_DATA 3
#define TX_FRAME 4
#define TX_WAIT_BPF 5
#define TX_BIT0 0
#define TX_BIT1 1
#define FRAME_EMPTY 0
#define FRAME_FULL 1
#define FRAME_NO_FRAME 2
#define FRAME_NEW_FRAME 3
#define BYTE_EMPTY 0
#define BYTE_FULL 1
UCHAR gray_8PSK[8] = {7,0,6,5,2,1,3,4}; // ?? was 1::8
UCHAR gray_PI4QPSK[4] = {3,1,5,7};
float audio_buf[5][32768]; // [1..4,0..32767]
float tx_src_BPF_buf[5][32768];
float tx_BPF_buf[5][32768];
float tx_prev_BPF_buf[5][32768];
float tx_BPF_core[5][32768];
long tx_delay_cnt[5] = {0}; // : array[1..4] of longword=(0,0,0,0};
long tx_tail_cnt[5] = {0};
int tx_hitoneraisedb[5] = {0}; // : array[1..4] of integer=(0,0,0,0};
float tx_hitoneraise[5] = {0}; // : array[1..4] of single=(0,0,0,0};
float tx_freq[5] = { 1000, 1000, 1000, 1000, 1000}; // : array[1..4] of single=(1000,1000,1000,1000};
float tx_shift[5] = { 200, 200, 200, 200, 200}; // : array[1..4] of single=(200,200,200,200};
float tx_bit_mod[5] = {1, 1, 1, 1, 1}; // : array[1..4] of single=(1,1,1,1};
float tx_osc[5] = {0}; // : array[1..4] of single=(0,0,0,0};
float tx_bit_osc[5] = {0}; // : array[1..4] of single=(0,0,0,0};
unsigned short txbpf[5] = { 400, 400, 400, 400, 400}; // : array[1..4] of word=(400,400,400,400};
unsigned short tx_BPF_tap[5] = { 256, 256, 256, 256, 256}; // : array[1..4] of word=(256,256,256,256};
unsigned short tx_baudrate[5] = { 300, 300, 300, 300, 300}; // : array[1..4] of word=(300,300,300,300};
unsigned short tx_BPF_timer[5] = {0}; // : array[1..4] of word=(0,0,0,0};
UCHAR tx_pol[5] = {0}; // : array[1..4] of byte=(0,0,0,0};
UCHAR tx_last_pol[5] = {0}; // : array[1..4] of byte=(0,0,0,0};
UCHAR tx_last_diddle[5] = {0}; // : array[1..4] of byte=(0,0,0,0};
UCHAR tx_flag_cnt[5] = {0}; // : array[1..4] of byte=(0,0,0,0};
UCHAR tx_frame_status[5] = {0}; // : array[1..4] of byte=(0,0,0,0};
UCHAR tx_byte_status[5] = {0}; // : array[1..4] of byte=(0,0,0,0};
UCHAR tx_status[5] = {0}; // : array[1..4] of byte=(0,0,0,0};
UCHAR tx_bit_stuff_cnt[5] = {0}; // : array[1..4] of byte=(0,0,0,0};
UCHAR tx_bit_cnt[5] = {0}; // : array[1..4] of byte=(0,0,0,0};
UCHAR tx_last_bit[5] = {0}; // : array[1..4] of byte=(0,0,0,0};
UCHAR tx_bit_stream[5] = {0}; // : array[1..4] of byte=(0,0,0,0};
UCHAR tx_8PSK[5] = {0}; // : array[1..4] of byte=(0,0,0,0};
UCHAR tx_QPSK[5] = {0}; // : array[1..4] of byte=(0,0,0,0};
float tx_I_mod[5] = {1, 1, 1, 1, 1}; // : array[1..4] of single=(1,1,1,1};
float tx_Q_mod[5] = {1, 1, 1, 1, 1}; // : array[1..4] of single=(1,1,1,1};
float tx_QPSK_avg_I[5] = {0}; // : array[1..4] of single=(0,0,0,0};
float tx_QPSK_avg_Q[5] = {0}; // : array[1..4] of single=(0,0,0,0};
float tx_QPSK_df_I[5] = {0}; // : array[1..4] of single=(0,0,0,0};
float tx_QPSK_df_Q [5] = {0}; // : array[1..4] of single=(0,0,0,0};
float tx_QPSK_I[5] = {0}; // : array[1..4] of single=(0,0,0,0};
float tx_QPSK_Q[5] = {0}; // : array[1..4] of single=(0,0,0,0};
float tx_QPSK_old_I[5] = {0}; // : array[1..4] of single=(0,0,0,0};
float tx_QPSK_old_Q[5] = {0}; // : array[1..4] of single=(0,0,0,0};
float tx_8PSK_avg_I[5] = {0}; // : array[1..4] of single=(0,0,0,0};
float tx_8PSK_avg_Q[5] = {0}; // : array[1..4] of single=(0,0,0,0};
float tx_8PSK_df_I[5] = {0}; // : array[1..4] of single=(0,0,0,0};
float tx_8PSK_df_Q[5] = {0}; // : array[1..4] of single=(0,0,0,0};
float tx_8PSK_I[5] = {0}; // : array[1..4] of single=(0,0,0,0};
float tx_8PSK_Q[5] = {0}; // : array[1..4] of single=(0,0,0,0};
float tx_8PSK_old_I[5] = {0}; // : array[1..4] of single=(0,0,0,0};
float tx_8PSK_old_Q[5] = {0}; // : array[1..4] of single=(0,0,0,0};
float tx_osc1[5] = {0}; // : array[1..4] of single=(0,0,0,0};
float tx_osc2[5] = {0}; // : array[1..4] of single=(0,0,0,0};
float tx_osc3[5] = {0}; // : array[1..4] of single=(0,0,0,0};
float tx_osc4[5] = {0}; // : array[1..4] of single=(0,0,0,0};
short tx_inv1[5] = {1, 1, 1, 1, 1}; // : array[1..4] of shortint=(1,1,1,1};
short tx_inv2[5] = {1, 1, 1, 1, 1}; // : array[1..4] of shortint=(1,1,1,1};
short tx_inv3[5] = {1, 1, 1, 1, 1}; // : array[1..4] of shortint=(1,1,1,1};
short tx_inv4[5] = {1, 1, 1, 1, 1}; // : array[1..4] of shortint=(1,1,1,1};
short tx_old_inv1[5] = {1, 1, 1, 1, 1}; // : array[1..4] of shortint=(1,1,1,1};
short tx_old_inv2[5] = {1, 1, 1, 1, 1}; // : array[1..4] of shortint=(1,1,1,1};
short tx_old_inv3[5] = {1, 1, 1, 1, 1}; // : array[1..4] of shortint=(1,1,1,1};
short tx_old_inv4[5] = {1, 1, 1, 1, 1}; // : array[1..4] of shortint=(1,1,1,1};
float tx_bit1_mod[5] = {1, 1, 1, 1, 1}; // : array[1..4] of single=(1,1,1,1};
float tx_bit2_mod[5] = {1, 1, 1, 1, 1}; // : array[1..4] of single=(1,1,1,1};
float tx_bit3_mod[5] = {1, 1, 1, 1, 1}; // : array[1..4] of single=(1,1,1,1};
float tx_bit4_mod[5] = {1, 1, 1, 1, 1}; // : array[1..4] of single=(1,1,1,1};
UINT tx_viterbi[5] = {0}; // : array[1..4] of word=(0,0,0,0};
UCHAR tx_intv_tbl[5][4]; // : array[1..4,0..3] of byte;
short tx_inv[5] = {1, 1, 1, 1, 1}; // : array[1..4] of shortint=(1,1,1,1};
BOOL tx_change_phase[5] = {0}; // : array[1..4] of boolean=(FALSE,FALSE,FALSE,FALSE};
BOOL tx_bs_bit[5] = {0}; // : array[1..4] of boolean=(FALSE,FALSE,FALSE,FALSE};
string * tx_data[5] = {0}; // : array[1..4] of string=('','','',''};
int tx_data_len[5] = {0};
int tx_fx25_size[4] = { 0, 0, 0, 0 };
int tx_fx25_size_cnt[4] = { 0, 0, 0, 0 };
int tx_fx25_mode[4] = { 0, 0, 0, 0 };
// uses sm_main,ax25,ax25_agw,ax25_demod,rsunit;
UCHAR tx_nrzi(UCHAR snd_ch, UCHAR bit)
{
// Debugprintf("Before NRZI %d", bit);
if (bit == TX_BIT0)
{
// Zero so switch bit
tx_last_bit[snd_ch] ^= 1;
}
return tx_last_bit[snd_ch];
}
BOOL tx_bit_stuffing(UCHAR snd_ch, UCHAR bit)
{
// result = FALSE;
// if bit=TX_BIT1 then inc(tx_bit_stuff_cnt[snd_ch]};
// if bit=TX_BIT0 then tx_bit_stuff_cnt[snd_ch] = 0;
// if tx_bit_stuff_cnt[snd_ch]=5 then begin tx_bit_stuff_cnt[snd_ch] = 0; result = TRUE; end;
//end;
if (bit == TX_BIT1)
tx_bit_stuff_cnt[snd_ch]++;
if (bit == TX_BIT0)
tx_bit_stuff_cnt[snd_ch] = 0;
if (tx_bit_stuff_cnt[snd_ch] == 5)
{
tx_bit_stuff_cnt[snd_ch] = 0;
return TRUE;
}
return FALSE;
}
void interleave(char *s, int len)
{
// var
// data: string;
// i,k,len: word;
// nr_blocks: word;
//begin{
// data = '';
// len = length(s};
// if len>0 then nr_blocks = ((len-1} div 16}+1 else nr_blocks = 1;
// for i = 1 to 16 do
// for k = 0 to nr_blocks-1 do
// if (i+k*16}<=len then data = data+s[i+k*16];
// result = data;
//end;
char data[1024];
UINT i,k;
UINT nr_blocks;
int n = 0;
if (len > 0)
nr_blocks = ((len - 1) / 16) + 1;
else
nr_blocks = 1;
for (i = 0; i < 16; i++)
{
for (k = 0; k < nr_blocks; k++)
{
if ((i + k * 16) <= len)
data[n++] = s[i + k * 16];
}
}
memcpy(s, data, len);
}
//procedure get_new_frame(snd_ch: byte; var frame_stream: TStringList};
//var
// header,line,temp: string;
// len,i,size: word;
// crc: word;
//begin
void get_new_frame(UCHAR snd_ch, TStringList * frame_stream)
{
UCHAR header[256];
UCHAR line[1024];
int LineLen;
string ** Items;
string * myTemp;
UCHAR temp[1024];
UINT len, i, size;
UINT crc;
tx_bs_bit[snd_ch] = FALSE;
tx_bit_cnt[snd_ch] = 0;
tx_flag_cnt[snd_ch] = 0;
tx_bit_stuff_cnt[snd_ch] = 0;
tx_bit_stream[snd_ch] = FRAME_FLAG;
tx_frame_status[snd_ch] = FRAME_NEW_FRAME;
tx_byte_status[snd_ch] = BYTE_EMPTY;
if (frame_stream->Count == 0)
{
tx_frame_status[snd_ch] = FRAME_NO_FRAME;
return;
}
// We now pass control byte and ack bytes on front and pointer to socket on end if ackmode
myTemp = Strings(frame_stream, 0); // get message
if ((myTemp->Data[0] & 0x0f) == 12) // ACKMODE
{
// Save copy then copy data up 3 bytes
Add(&KISS_acked[snd_ch], duplicateString(myTemp));
mydelete(myTemp, 0, 3);
myTemp->Length -= sizeof(void *);
}
else
{
// Just remove control
mydelete(myTemp, 0, 1);
}
tx_data[snd_ch] = duplicateString(myTemp); // so can free original below
Delete(frame_stream, 0); // This will invalidate temp
AGW_AX25_frame_analiz(snd_ch, FALSE, tx_data[snd_ch]);
put_frame(snd_ch, tx_data[snd_ch], "", TRUE, FALSE);
if (tx_data[snd_ch]->Length == 0 || modem_mode[snd_ch] != MODE_MPSK)
return;
// Reformat MPSK Data
//Take data 8 bytes at a time and add 8 bytes of RS data
LineLen = 0;
while (tx_data[snd_ch]->Length > 0)
{
size = tx_data[snd_ch]->Length;
if (size > 8)
size = 8;
memcpy(temp, tx_data[snd_ch]->Data, size);
// Delete the chars from tx_data
mydelete(tx_data[snd_ch], 0, 8);
memset(xData, 0, sizeof(xData));
memset(xEncoded, 0, sizeof(xEncoded));
memcpy(xData, temp, size);
InitBuffers();
EncodeRS(xData, xEncoded); // This puts the 8 RS bytes in xEncoded
memcpy(&line[LineLen], xData, size);
memcpy(&line[LineLen + size], xEncoded, MaxErrors * 2);
LineLen += size + (MaxErrors * 2);
}
len = LineLen;
interleave(line, LineLen);
scrambler(line, LineLen);
header[0] = 0x7e;
header[1] = 0x7e;
header[2] = len >> 8;
header[3] = len;
crc = get_fcs(header, 4);
header[4] = crc >> 8;
header[5] = crc;
memset(xData, 0, sizeof(xData));
memset(xEncoded, 0, sizeof(xEncoded));
memmove(xData, header, 6);
// RSEncode(xData, xEncoded, 6 + (MaxErrors * 2), MaxErrors * 2);
InitBuffers();
EncodeRS(xData, xEncoded);
fx25_encode_rs(xData, xEncoded, 0, 8);
// We should now have RS Encoded Header in xEncoded;
// I think we send encoded header then line
tx_data[snd_ch]->Length = 0;
stringAdd(tx_data[snd_ch], xData, 6);
stringAdd(tx_data[snd_ch], xEncoded, MaxErrors * 2);
stringAdd(tx_data[snd_ch], line, LineLen);
// For testing, descramble and de-interleve
scrambler(line, LineLen); // should look like interleaved
{
Byte unscrambled[1024];
int count, len;
int origlen;
len = LineLen;
count = (len + 15) / 16;
int j1, j2, j3, i, j;
j3 = 0;
for (j1 = 0; j1 < 16; j1++)
{
// Each char in block
for (j2 = 0; j2 < count; j2++)
{
// Blocks
unscrambled[j2 * 16 + j1] = line[j3];
j3++;
}
}
// Now remove RS (will check later)
i = 0;
j = 0;
while (j < len)
{
Byte line1[256];
int nErr, eras_pos = 0;
Byte rs_block[256];
memcpy(line1, &unscrambled[j], 16);
memset(xEncoded, 0, sizeof(xEncoded));
memset(xDecoded, 0, sizeof(xDecoded));
memcpy(xEncoded, &unscrambled[j], 16);
// nErr = DecodeRS(xEncoded, xDecoded);
memset(rs_block, 0, 255);
memcpy(rs_block, &unscrambled[j], 8);
memcpy(&rs_block[255 - 8], &unscrambled[j+8], 8);
nErr = fx25_decode_rs(rs_block, &eras_pos, 0, 0, 8);
// line1 = '';
// for j1 = MaxErrors * 2 to size - 1 do line1 = line1 + chr(xDecoded[j1]);
memcpy(&unscrambled[i], &unscrambled[j], 8);
i += 8;
j += 16;
}
j3 = j3;
}
}
int get_new_bit(Byte snd_ch, Byte bit)
{
unsigned short len;
string * s;
if (tx_frame_status[snd_ch] == FRAME_FULL)
{
if (tx_byte_status[snd_ch] == BYTE_EMPTY)
{
len = tx_data[snd_ch]->Length;
if (len > 0)
{
s = tx_data[snd_ch];
tx_bit_stream[snd_ch] = (s->Data[0]);
tx_frame_status[snd_ch] = FRAME_FULL;
tx_byte_status[snd_ch] = BYTE_FULL;
tx_bit_cnt[snd_ch] = 0;
mydelete(tx_data[snd_ch], 0, 1);
}
else tx_frame_status[snd_ch] = FRAME_EMPTY;
}
if (tx_byte_status[snd_ch] == BYTE_FULL)
bit = tx_bit_stream[snd_ch] & TX_BIT1;
if (modem_mode[snd_ch] == MODE_MPSK)
{
tx_bit_cnt[snd_ch]++;
tx_bit_stream[snd_ch] = tx_bit_stream[snd_ch] >> 1;
if (tx_bit_cnt[snd_ch] >= 8)
tx_byte_status[snd_ch] = BYTE_EMPTY;
}
else
{
if (tx_bs_bit[snd_ch])
bit = TX_BIT0;
tx_bs_bit[snd_ch] = tx_bit_stuffing(snd_ch, bit);
if (!tx_bs_bit[snd_ch])
{
tx_bit_cnt[snd_ch]++;
tx_bit_stream[snd_ch] >>= 1;
if (tx_bit_cnt[snd_ch] >= 8 && !tx_bs_bit[snd_ch])
tx_byte_status[snd_ch] = BYTE_EMPTY;
}
}
}
if (tx_frame_status[snd_ch] == FRAME_EMPTY)
get_new_frame(snd_ch, &all_frame_buf[snd_ch]);
if ((tx_frame_status[snd_ch] == FRAME_NEW_FRAME) || (tx_frame_status[snd_ch] == FRAME_NO_FRAME))
{
bit = tx_bit_stream[snd_ch] & TX_BIT1;
tx_flag_cnt[snd_ch]++;
tx_bit_stream[snd_ch] >>= 1;
if (tx_flag_cnt[snd_ch] == 8)
{
switch (tx_frame_status[snd_ch])
{
case FRAME_NEW_FRAME:
tx_frame_status[snd_ch] = FRAME_FULL;
break;
case FRAME_NO_FRAME:
tx_tail_cnt[snd_ch] = 0;
tx_frame_status[snd_ch] = FRAME_EMPTY;
tx_status[snd_ch] = TX_TAIL;
break;
}
}
}
return bit;
}
////// FX.25 //////
void bit_to_fx25(Byte * tx_byte, Byte * bit_cnt, Byte bit, string * data, int * data_cnt)
{
*tx_byte = (*tx_byte >> 1) | (bit << 7);
(*bit_cnt)++;
if (*bit_cnt == 8)
{
stringAdd(data, tx_byte, 1);
*bit_cnt = 0;
}
(*data_cnt)++;
}
string * fill_fx25_data(int snd_ch, string * data)
{
#define nr_tags 5
string * result;
Byte rs_roots[nr_tags + 1] = { 16, 32, 64, 32, 16, 16 };
word rs_payload[nr_tags + 1] = { 1912, 1784, 1528, 1024, 512, 256 }; // 239, 233, 191, 128, 64, 32
unsigned long long rs_tag[nr_tags + 1] =
{
0xB74DB7DF8A532F3E, // 255 / 16 (239)
0x6E260B1AC5835FAE, // 255 / 32 (223)
0x3ADB0C13DEAE2836, // 255 / 64 (191)
0xFF94DC634F1CFF4E, // 160 / 32 (128)
0xC7DC0508F3D9B09E, // 80 / 16 (64)
0x8F056EB4369660EE // 48 / 16 (32)
};
// 0x26FF60A600CC8FDE) 144; = 16;
// 0x1EB7B9CDBC09C00E) 96; 32;
// 0xDBF869BD2DBB1776) 64;= 32;
// 0xAB69DB6A543188D6) 192; = 64;
// 0x4A4ABEC4A724B796) 128; = 64;
string * ax25_data = newString();
int i, ax25_size;
Byte a, bit, bit_cnt, bit_cnt1, bs, tx_byte;
Byte rs_id;
Byte rs_block[256], parity[256];
ax25_size = 0;
bs = 0;
tx_byte = 0;
bit_cnt = 0;
// Load start flag
a = FRAME_FLAG;
for (i = 0; i < 8; i++)
{
bit = a & 1;
a = a >> 1;
bit_to_fx25(&tx_byte, &bit_cnt, bit, ax25_data, &ax25_size);
}
// Load body
for (i = 0; i < data->Length; i++)
{
bit_cnt1 = 0;
a = data->Data[i];
do
{
if (bs == 5)
{
bit = TX_BIT0;
bs = 0;
}
else
{
bit = a & 1;
a = a >> 1;
bit_cnt1++;
if (bit == TX_BIT1)
bs++;
else
bs = 0;
}
bit_to_fx25(&tx_byte, &bit_cnt, bit, ax25_data, &ax25_size);
} while (bit_cnt1 != 8 || bs == 5);
}
// Load close flag
a = FRAME_FLAG;
for (i = 0; i < 8; i++)
{
bit = a & 1;
a = a >> 1;
bit_to_fx25(&tx_byte, &bit_cnt, bit, ax25_data, &ax25_size);
}
a = FRAME_FLAG;
// if too short or too long
if (ax25_size < 168 || ax25_size > 1912) // < 21 or > 239
{
// Send as normal ax25 packet
if (bit_cnt > 0)
{
do
{
tx_byte = tx_byte >> 1;
bit_cnt++;
if (bit_cnt == 8)
stringAdd(ax25_data, &tx_byte, 1);
} while (bit_cnt < 8);
}
tx_fx25_size[snd_ch] = ax25_size;
return ax25_data;
}
// Send as FX25 Message
// find RS block size
rs_id = 0;
for (i = 0; i <= nr_tags; i++)
if (ax25_size <= rs_payload[i])
rs_id = i;
// Padding to block size
while (ax25_size != rs_payload[rs_id])
{
bit = a & 1;
a = (a >> 1) | (bit << 7);
bit_to_fx25(&tx_byte, &bit_cnt, bit, ax25_data, &ax25_size);
}
memset(rs_block, 0, 255);
move(&ax25_data->Data[0], &rs_block[0], ax25_data->Length);
fx25_encode_rs(rs_block, parity, 0, rs_roots[rs_id]);
result = newString();
stringAdd(result, (Byte *)&rs_tag[rs_id], 8);
stringAdd(result, ax25_data->Data, ax25_data->Length);
stringAdd(result, parity, rs_roots[rs_id]);
tx_fx25_size[snd_ch] = result->Length << 3;
freeString(ax25_data);
return result;
}
void fx25_get_new_frame(int snd_ch, TStringList * frame_stream)
{
string * myTemp;
tx_bs_bit[snd_ch] = 0;
tx_bit_cnt[snd_ch] = 0;
tx_flag_cnt[snd_ch] = 0;
tx_bit_stuff_cnt[snd_ch] = 0;
tx_fx25_size_cnt[snd_ch] = 0;
tx_fx25_size[snd_ch] = 1;
tx_frame_status[snd_ch] = FRAME_NEW_FRAME;
tx_byte_status[snd_ch] = BYTE_EMPTY;
if (frame_stream->Count == 0)
tx_frame_status[snd_ch] = FRAME_NO_FRAME;
else
{
// We now pass control byte and ack bytes on front and pointer to socket on end if ackmode
myTemp = Strings(frame_stream, 0); // get message
if ((myTemp->Data[0] & 0x0f) == 12) // ACKMODE
{
// Save copy then copy data up 3 bytes
Add(&KISS_acked[snd_ch], duplicateString(myTemp));
mydelete(myTemp, 0, 3);
myTemp->Length -= sizeof(void *);
}
else
{
// Just remove control
mydelete(myTemp, 0, 1);
}
AGW_AX25_frame_analiz(snd_ch, FALSE, myTemp);
put_frame(snd_ch, myTemp, "", TRUE, FALSE);
tx_data[snd_ch] = fill_fx25_data(snd_ch, myTemp);
Delete(frame_stream, 0); // This will invalidate temp
}
}
int fx25_get_new_bit(int snd_ch, Byte bit)
{
string *s;
if (tx_frame_status[snd_ch] == FRAME_EMPTY)
{
fx25_get_new_frame(snd_ch, &all_frame_buf[snd_ch]);
if (tx_frame_status[snd_ch] == FRAME_NEW_FRAME)
tx_frame_status[snd_ch] = FRAME_FULL;
}
if (tx_frame_status[snd_ch] == FRAME_FULL)
{
if (tx_byte_status[snd_ch] == BYTE_EMPTY)
{
if (tx_data[snd_ch]->Length)
{
s = tx_data[snd_ch];
tx_bit_stream[snd_ch] = s->Data[0];
tx_frame_status[snd_ch] = FRAME_FULL;
tx_byte_status[snd_ch] = BYTE_FULL;
tx_bit_cnt[snd_ch] = 0;
mydelete(tx_data[snd_ch], 0, 1);
}
else
tx_frame_status[snd_ch] = FRAME_EMPTY;
}
if (tx_byte_status[snd_ch] == BYTE_FULL)
{
bit = tx_bit_stream[snd_ch] & TX_BIT1;
tx_bit_stream[snd_ch] = tx_bit_stream[snd_ch] >> 1;
tx_bit_cnt[snd_ch]++;
tx_fx25_size_cnt[snd_ch]++;
if (tx_bit_cnt[snd_ch] >= 8)
tx_byte_status[snd_ch] = BYTE_EMPTY;
if (tx_fx25_size_cnt[snd_ch] == tx_fx25_size[snd_ch])
tx_frame_status[snd_ch] = FRAME_EMPTY;
}
}
if (tx_frame_status[snd_ch] == FRAME_EMPTY)
{
fx25_get_new_frame(snd_ch, &all_frame_buf[snd_ch]);
switch (tx_frame_status[snd_ch])
{
case FRAME_NEW_FRAME:
tx_frame_status[snd_ch] = FRAME_FULL;
break;
case FRAME_NO_FRAME:
tx_tail_cnt[snd_ch] = 0;
tx_frame_status[snd_ch] = FRAME_EMPTY;
tx_status[snd_ch] = TX_TAIL;
break;
}
}
return bit;
}
//////////////////
int get_new_bit_tail(UCHAR snd_ch, UCHAR bit)
{
long _txtail = 0;
UCHAR _diddles;
if (modem_mode[snd_ch] == MODE_FSK)
_diddles = diddles;
else
_diddles = 0;
if (modem_mode[snd_ch] == MODE_FSK)
_txtail = txtail[snd_ch];
else if (modem_mode[snd_ch] == MODE_BPSK)
_txtail = txtail[snd_ch];
else if (modem_mode[snd_ch] == MODE_8PSK)
_txtail = txtail[snd_ch] * 3;
else if (modem_mode[snd_ch] == MODE_QPSK || modem_mode[snd_ch] == MODE_PI4QPSK)
_txtail = txtail[snd_ch] << 1;
else if (modem_mode[snd_ch] == MODE_MPSK)
_txtail = txtail[snd_ch] << 2;
_txtail = (_txtail * tx_baudrate[snd_ch]) / 1000;
if (qpsk_set[snd_ch].mode == QPSK_V26 || modem_mode[snd_ch] == MODE_8PSK)
_diddles = 2;
switch (_diddles)
{
case 0:
if (tx_tail_cnt[snd_ch] < _txtail)
{
bit = TX_BIT0;
tx_tail_cnt[snd_ch]++;
}
else
{
tx_status[snd_ch] = TX_WAIT_BPF;
}
break;
case 1:
if (tx_tail_cnt[snd_ch] < _txtail)
{
if (tx_last_diddle[snd_ch] == TX_BIT0)
bit = TX_BIT1;
else
bit = TX_BIT0;
tx_tail_cnt[snd_ch]++;
tx_last_diddle[snd_ch] = bit;
}
else
{
Debugprintf("End TXTAIL %d", SampleNo);
tx_status[snd_ch] = TX_WAIT_BPF;
}
break;
case 2:
if (tx_tail_cnt[snd_ch] < _txtail)
{
bit = FRAME_FLAG >> (tx_tail_cnt[snd_ch] % 8) & 1;
tx_tail_cnt[snd_ch]++;
}
else
{
Debugprintf("End TXTAIL %d", SampleNo);
tx_status[snd_ch] = TX_WAIT_BPF;
}
break;
}
return bit;
}
int get_new_bit_delay(UCHAR snd_ch, UCHAR bit)
{
ULONG _txdelay = 0;
UCHAR _diddles;
_diddles = 0;
switch (modem_mode[snd_ch])
{
case MODE_FSK:
_diddles = diddles;
break;
case MODE_PI4QPSK:
case MODE_8PSK:
_diddles = 2;
break;
case MODE_QPSK:
if (qpsk_set[snd_ch].mode == QPSK_V26)
_diddles = 2;
break;
}
if (modem_mode[snd_ch] == MODE_FSK)
_txdelay = txdelay[snd_ch];
else if (modem_mode[snd_ch] == MODE_BPSK)
_txdelay = txdelay[snd_ch];
else if (modem_mode[snd_ch] == MODE_8PSK)
_txdelay = txdelay[snd_ch] * 3;
else if (modem_mode[snd_ch] == MODE_QPSK || modem_mode[snd_ch] == MODE_PI4QPSK)
_txdelay = txdelay[snd_ch] << 1;
else if (modem_mode[snd_ch] == MODE_MPSK)
{
if (txdelay[snd_ch] < 400)
_txdelay = 400 << 2; //AFC delay
else
_txdelay = txdelay[snd_ch] << 2;
}
_txdelay = (_txdelay * tx_baudrate[snd_ch]) / 1000;
switch (_diddles)
{
case 0:
if (tx_delay_cnt[snd_ch] < _txdelay)
{
bit = TX_BIT0;
tx_delay_cnt[snd_ch]++;
}
else
{
tx_status[snd_ch] = TX_FRAME;
}
break;
case 1:
if (tx_delay_cnt[snd_ch] < _txdelay)
{
if (tx_last_diddle[snd_ch] == TX_BIT0)
bit = TX_BIT1;
else
bit = TX_BIT0;
tx_delay_cnt[snd_ch]++;
tx_last_diddle[snd_ch] = bit;
}
else
{
tx_status[snd_ch] = TX_FRAME;
Debugprintf("End TXD %d", SampleNo);
}
break;
case 2:
// Send Flags
if (tx_delay_cnt[snd_ch] < _txdelay)
{
bit = FRAME_FLAG >> ((8 - (_txdelay % 8) + tx_delay_cnt[snd_ch]) % 8) & 1;
tx_delay_cnt[snd_ch]++;
}
else
{
tx_status[snd_ch] = TX_FRAME;
Debugprintf("End TXD %d", SampleNo);
}
break;
}
return bit;
}
// is this waiting for the filter to fill?
// No, flushing BPF
void get_wait_bpf(UCHAR snd_ch)
{
tx_BPF_timer[snd_ch]++;
if (tx_BPF_timer[snd_ch] == tx_BPF_tap[snd_ch] )
{
tx_status[snd_ch] = TX_NO_DATA;
tx_BPF_timer[snd_ch] = 0;
}
}
//procedure modulator(snd_ch: byte; var buf: array of single; buf_size: word};
//{
/*
function filter(x,k: single}: single;
begin
result = k*cos(x};
if result>1 then result = 1;
if result<-1 then result = -1;
end;
}
*/
single filter(single x)
{
if (x <= PI25)
return 1.0f;
if (x >= PI75)
return -1.0f;
return cosf(2.0f * x -PI5);
}
// make_samples return one sample of the waveform
// But seems to be called only once per bit ??
// No, but needs to preserve bit between calls
float make_samples(unsigned char snd_ch, unsigned char * bitptr)
{
float pi2, x1, x;
Byte i,qbit,tribit,dibit;
float z1,z2,z3,z4;
unsigned short b, msb, lsb;
unsigned char bit = *bitptr;
float amp = 0;
pi2 = 2 * pi / TX_Samplerate;
x1 = pi * tx_baudrate[snd_ch] / TX_Samplerate;
if (modem_mode[snd_ch] == MODE_FSK)
{
if (bit == TX_BIT0)
x = pi2*(tx_freq[snd_ch] + 0.5f * tx_shift[snd_ch]);
else
x = pi2*(tx_freq[snd_ch] - 0.5f * tx_shift[snd_ch]);
amp = 1.0f;
if (tx_baudrate[snd_ch] > 600)
{
if (tx_hitoneraisedb[snd_ch] < 0 && bit == TX_BIT0)
amp = tx_hitoneraise[snd_ch];
if (tx_hitoneraisedb[snd_ch] > 0 && bit == TX_BIT1)
amp = tx_hitoneraise[snd_ch];
}
tx_osc[snd_ch] = tx_osc[snd_ch] + x;
if (tx_osc[snd_ch] > 2*pi)
tx_osc[snd_ch] = tx_osc[snd_ch] - 2*pi;
}
else if (modem_mode[snd_ch] == MODE_BPSK)
{
if (tx_change_phase[snd_ch])
tx_bit_mod[snd_ch] = tx_inv[snd_ch] * cos(tx_bit_osc[snd_ch]);
x = pi2 * (tx_freq[snd_ch]);
tx_osc[snd_ch] = tx_osc[snd_ch] + x;
if (tx_osc[snd_ch] > 2 * pi)
tx_osc[snd_ch] = tx_osc[snd_ch] - 2 * pi;
}
else if (modem_mode[snd_ch] == MODE_QPSK)
{
if (tx_QPSK_old_I[snd_ch] != tx_QPSK_I[snd_ch])
tx_I_mod[snd_ch] = tx_QPSK_avg_I[snd_ch] + tx_QPSK_df_I[snd_ch] * filter(tx_bit_osc[snd_ch]);
else
tx_I_mod[snd_ch] = tx_QPSK_I[snd_ch];
if (tx_QPSK_old_Q[snd_ch] != tx_QPSK_Q[snd_ch])
tx_Q_mod[snd_ch] = tx_QPSK_avg_Q[snd_ch] + tx_QPSK_df_Q[snd_ch] * filter(tx_bit_osc[snd_ch]);
else
tx_Q_mod[snd_ch] = tx_QPSK_Q[snd_ch];
x = pi2 * (tx_freq[snd_ch]);
tx_osc[snd_ch] = tx_osc[snd_ch] + x;
if (tx_osc[snd_ch] > 2 * pi)
tx_osc[snd_ch] = tx_osc[snd_ch] - 2 * pi;
}
else if (modem_mode[snd_ch] == MODE_8PSK || modem_mode[snd_ch] == MODE_PI4QPSK)
{
if (tx_8PSK_old_I[snd_ch] != tx_8PSK_I[snd_ch])
tx_I_mod[snd_ch] = tx_8PSK_avg_I[snd_ch] + tx_8PSK_df_I[snd_ch] * filter(tx_bit_osc[snd_ch]);
else
tx_I_mod[snd_ch] = tx_8PSK_I[snd_ch];
if (tx_8PSK_old_Q[snd_ch] != tx_8PSK_Q[snd_ch])
tx_Q_mod[snd_ch] = tx_8PSK_avg_Q[snd_ch] + tx_8PSK_df_Q[snd_ch] * filter(tx_bit_osc[snd_ch]);
else
tx_Q_mod[snd_ch] = tx_8PSK_Q[snd_ch];
x = pi2 * (tx_freq[snd_ch]);
tx_osc[snd_ch] = tx_osc[snd_ch] + x;
if (tx_osc[snd_ch] > 2 * pi)
tx_osc[snd_ch] = tx_osc[snd_ch] - 2 * pi;
}
else if (modem_mode[snd_ch] == MODE_MPSK)
{
z1 = pi2 * (tx_freq[snd_ch] + ch_offset[0]);
z2 = pi2 * (tx_freq[snd_ch] + ch_offset[1]);
z3 = pi2 * (tx_freq[snd_ch] + ch_offset[2]);
z4 = pi2 * (tx_freq[snd_ch] + ch_offset[3]);
tx_osc1[snd_ch] = tx_osc1[snd_ch] + z1;
tx_osc2[snd_ch] = tx_osc2[snd_ch] + z2;
tx_osc3[snd_ch] = tx_osc3[snd_ch] + z3;
tx_osc4[snd_ch] = tx_osc4[snd_ch] + z4;
if (tx_osc1[snd_ch] > 2 * pi)
tx_osc1[snd_ch] = tx_osc1[snd_ch] - 2 * pi;
if (tx_osc2[snd_ch] > 2 * pi)
tx_osc2[snd_ch] = tx_osc2[snd_ch] - 2 * pi;
if (tx_osc3[snd_ch] > 2 * pi)
tx_osc3[snd_ch] = tx_osc3[snd_ch] - 2 * pi;
if (tx_osc4[snd_ch] > 2 * pi)
tx_osc4[snd_ch] = tx_osc4[snd_ch] - 2 * pi;
if (tx_old_inv1[snd_ch] != tx_inv1[snd_ch])
tx_bit1_mod[snd_ch] = tx_inv1[snd_ch] * cos(tx_bit_osc[snd_ch]);
else
tx_bit1_mod[snd_ch] = -tx_inv1[snd_ch];
if (tx_old_inv2[snd_ch] != tx_inv2[snd_ch])
tx_bit2_mod[snd_ch] = tx_inv2[snd_ch] * cos(tx_bit_osc[snd_ch]);
else
tx_bit2_mod[snd_ch] = -tx_inv2[snd_ch];
if (tx_old_inv3[snd_ch] != tx_inv3[snd_ch])
tx_bit3_mod[snd_ch] = tx_inv3[snd_ch] * cos(tx_bit_osc[snd_ch]);
else
tx_bit3_mod[snd_ch] = -tx_inv3[snd_ch];
if (tx_old_inv4[snd_ch] != tx_inv4[snd_ch])
tx_bit4_mod[snd_ch] = tx_inv4[snd_ch] * cos(tx_bit_osc[snd_ch]);
else
tx_bit4_mod[snd_ch] = -tx_inv4[snd_ch];
}
tx_bit_osc[snd_ch] = tx_bit_osc[snd_ch] + x1;
if (tx_bit_osc[snd_ch] > pi)
{
// This seems to get the next bit,
// but why?? - end of samples for last bit
tx_bit_osc[snd_ch] = tx_bit_osc[snd_ch] - pi;
// FSK Mode
if (modem_mode[snd_ch] == MODE_FSK)
{
bit = 0;
if (tx_status[snd_ch] == TX_SILENCE)
{
tx_delay_cnt[snd_ch] = 0;
tx_status[snd_ch] = TX_DELAY;
}
if (il2p_mode[snd_ch] >= IL2P_MODE_TXRX)
{
if (tx_status[snd_ch] == TX_DELAY)
tx_status[snd_ch] = TX_FRAME; // il2p generates TXDELAY as part of the frame, so go straight to TX_FRAME
if (tx_status[snd_ch] == TX_TAIL)
bit = get_new_bit_tail(snd_ch, bit);
if (tx_status[snd_ch] == TX_FRAME)
bit = il2p_get_new_bit(snd_ch, bit);
// No nrzi for il2p
*bitptr = bit;
}
else
{
// ax25/fx25
if (tx_status[snd_ch] == TX_DELAY)
bit = get_new_bit_delay(snd_ch, bit);
if (tx_status[snd_ch] == TX_TAIL)
bit = get_new_bit_tail(snd_ch, bit);
if (tx_status[snd_ch] == TX_FRAME)
{
if (tx_fx25_mode[snd_ch])
bit = fx25_get_new_bit(snd_ch, bit);
else
bit = get_new_bit(snd_ch, bit);
}
*bitptr = tx_nrzi(snd_ch, bit);
}
}
// BPSK Mode
if (modem_mode[snd_ch] == MODE_BPSK)
{
bit = 0;
if (tx_status[snd_ch] == TX_SILENCE)
{
tx_delay_cnt[snd_ch] = 0;
Debugprintf("Start TXD");
tx_status[snd_ch] = TX_DELAY;
}
// il2p generates TXDELAY as part of the frame, so go straight too TX_FRAME
if (tx_status[snd_ch] == TX_DELAY)
if (il2p_mode[snd_ch] >= IL2P_MODE_TXRX)
tx_status[snd_ch] = TX_FRAME;
else
bit = get_new_bit_delay(snd_ch, bit);
if (tx_status[snd_ch] == TX_TAIL)
bit = get_new_bit_tail(snd_ch, bit);
if (tx_status[snd_ch] == TX_FRAME)
{
if (il2p_mode[snd_ch] >= IL2P_MODE_TXRX)
bit = il2p_get_new_bit(snd_ch, bit);
else if (tx_fx25_mode[snd_ch])
bit = fx25_get_new_bit(snd_ch, bit);
else
bit = get_new_bit(snd_ch, bit);
}
// ?? *bitptr = tx_nrzi(snd_ch, bit);
if (bit == 0)
{
tx_inv[snd_ch] = -tx_inv[snd_ch];
tx_change_phase[snd_ch] = TRUE;
}
else
tx_change_phase[snd_ch] = FALSE;
}
// QPSK Mode
if (modem_mode[snd_ch] == MODE_QPSK)
{
dibit = 0;
for (i = 0; i < 2; i++)
{
bit = 0;
if (tx_status[snd_ch] == TX_SILENCE)
{
tx_delay_cnt[snd_ch] = 0;
tx_status[snd_ch] = TX_DELAY;
}
if (tx_status[snd_ch] == TX_DELAY)
bit = get_new_bit_delay(snd_ch, bit);
if (tx_status[snd_ch] == TX_TAIL)
bit = get_new_bit_tail(snd_ch, bit);
if (tx_status[snd_ch] == TX_FRAME)
bit = get_new_bit(snd_ch, bit);
dibit = (dibit << 1) | tx_nrzi(snd_ch, bit);
}
dibit = qpsk_set[snd_ch].tx[dibit & 3];
tx_QPSK[snd_ch] = (tx_QPSK[snd_ch] + dibit) & 3;
tx_QPSK_old_I[snd_ch] = tx_QPSK_I[snd_ch];
tx_QPSK_old_Q[snd_ch] = tx_QPSK_Q[snd_ch];
switch (tx_QPSK[snd_ch])
{
case 0:
tx_QPSK_I[snd_ch] = COS45;
tx_QPSK_Q[snd_ch] = COS45;
break;
case 1:
tx_QPSK_I[snd_ch] = -COS45;
tx_QPSK_Q[snd_ch] = COS45;
break;
case 2:
tx_QPSK_I[snd_ch] = -COS45;
tx_QPSK_Q[snd_ch] = -COS45;
break;
case 3:
tx_QPSK_I[snd_ch] = COS45;
tx_QPSK_Q[snd_ch] = -COS45;
break;
}
tx_QPSK_avg_I[snd_ch] = 0.5f*(tx_QPSK_old_I[snd_ch] + tx_QPSK_I[snd_ch]);
tx_QPSK_df_I[snd_ch] = 0.5f*(tx_QPSK_old_I[snd_ch] - tx_QPSK_I[snd_ch]);
tx_QPSK_avg_Q[snd_ch] = 0.5f*(tx_QPSK_old_Q[snd_ch] + tx_QPSK_Q[snd_ch]);
tx_QPSK_df_Q[snd_ch] = 0.5f*(tx_QPSK_old_Q[snd_ch] - tx_QPSK_Q[snd_ch]);
}
// PI/4 QPSK Mode
if (modem_mode[snd_ch] == MODE_PI4QPSK)
{
dibit = 0;
for (i = 0; i < 2; i++)
{
bit = 0;
if (tx_status[snd_ch] == TX_SILENCE)
{
tx_delay_cnt[snd_ch] = 0;
Debugprintf("Start TXD");
tx_status[snd_ch] = TX_DELAY;
}
if (tx_status[snd_ch] == TX_DELAY)
bit = get_new_bit_delay(snd_ch, bit);
if (tx_status[snd_ch] == TX_TAIL)
bit = get_new_bit_tail(snd_ch, bit);
if (tx_status[snd_ch] == TX_FRAME)
bit = get_new_bit(snd_ch, bit);
*bitptr = tx_nrzi(snd_ch, bit);
dibit = (dibit << 1) | *bitptr;
}
// This returns 3,1,5 or 7 so we use the odd enties in the 8PSK table
dibit = gray_PI4QPSK[dibit & 3];
tx_8PSK[snd_ch] = (tx_8PSK[snd_ch] + dibit) & 7;
tx_8PSK_old_I[snd_ch] = tx_8PSK_I[snd_ch];
tx_8PSK_old_Q[snd_ch] = tx_8PSK_Q[snd_ch];
switch (tx_8PSK[snd_ch])
{
case 0:
tx_8PSK_I[snd_ch] = 0;
tx_8PSK_Q[snd_ch] = 1;
break;
case 1:
tx_8PSK_I[snd_ch] = COS45;
tx_8PSK_Q[snd_ch] = COS45;
break;
case 2:
tx_8PSK_I[snd_ch] = 1;
tx_8PSK_Q[snd_ch] = 0;
break;
case 3:
tx_8PSK_I[snd_ch] = COS45;
tx_8PSK_Q[snd_ch] = -COS45;
break;
case 4:
tx_8PSK_I[snd_ch] = 0;
tx_8PSK_Q[snd_ch] = -1;
break;
case 5:
tx_8PSK_I[snd_ch] = -COS45;
tx_8PSK_Q[snd_ch] = -COS45;
break;
case 6:
tx_8PSK_I[snd_ch] = -1;
tx_8PSK_Q[snd_ch] = 0;
break;
case 7:
tx_8PSK_I[snd_ch] = -COS45;
tx_8PSK_Q[snd_ch] = COS45;
break;
}
tx_8PSK_avg_I[snd_ch] = 0.5*(tx_8PSK_old_I[snd_ch] + tx_8PSK_I[snd_ch]);
tx_8PSK_df_I[snd_ch] = 0.5*(tx_8PSK_old_I[snd_ch] - tx_8PSK_I[snd_ch]);
tx_8PSK_avg_Q[snd_ch] = 0.5*(tx_8PSK_old_Q[snd_ch] + tx_8PSK_Q[snd_ch]);
tx_8PSK_df_Q[snd_ch] = 0.5*(tx_8PSK_old_Q[snd_ch] - tx_8PSK_Q[snd_ch]);
}
// 8PSK Mode
if (modem_mode[snd_ch] == MODE_8PSK)
{
tribit = 0;
for (i = 0; i < 3; i++)
{
bit = 0;
if (tx_status[snd_ch] == TX_SILENCE)
{
tx_delay_cnt[snd_ch] = 0;
tx_status[snd_ch] = TX_DELAY;
}
if (tx_status[snd_ch] == TX_DELAY)
bit = get_new_bit_delay(snd_ch, bit);
if (tx_status[snd_ch] == TX_TAIL)
bit = get_new_bit_tail(snd_ch, bit);
if (tx_status[snd_ch] == TX_FRAME)
bit = get_new_bit(snd_ch, bit);
tribit = (tribit << 1) | tx_nrzi(snd_ch, bit);
}
tribit = gray_8PSK[tribit & 7];
tx_8PSK[snd_ch] = (tx_8PSK[snd_ch] + tribit) & 7;
tx_8PSK_old_I[snd_ch] = tx_8PSK_I[snd_ch];
tx_8PSK_old_Q[snd_ch] = tx_8PSK_Q[snd_ch];
switch (tx_8PSK[snd_ch])
{
case 0:
tx_8PSK_I[snd_ch] = 0;
tx_8PSK_Q[snd_ch] = 1;
break;
case 1:
tx_8PSK_I[snd_ch] = COS45;
tx_8PSK_Q[snd_ch] = COS45;
break;
case 2:
tx_8PSK_I[snd_ch] = 1;
tx_8PSK_Q[snd_ch] = 0;
break;
case 3:
tx_8PSK_I[snd_ch] = COS45;
tx_8PSK_Q[snd_ch] = -COS45;
break;
case 4:
tx_8PSK_I[snd_ch] = 0;
tx_8PSK_Q[snd_ch] = -1;
break;
case 5:
tx_8PSK_I[snd_ch] = -COS45;
tx_8PSK_Q[snd_ch] = -COS45;
break;
case 6:
tx_8PSK_I[snd_ch] = -1;
tx_8PSK_Q[snd_ch] = 0;
break;
case 7:
tx_8PSK_I[snd_ch] = -COS45;
tx_8PSK_Q[snd_ch] = COS45;
break;
}
tx_8PSK_avg_I[snd_ch] = 0.5f*(tx_8PSK_old_I[snd_ch] + tx_8PSK_I[snd_ch]);
tx_8PSK_df_I[snd_ch] = 0.5f*(tx_8PSK_old_I[snd_ch] - tx_8PSK_I[snd_ch]);
tx_8PSK_avg_Q[snd_ch] = 0.5f*(tx_8PSK_old_Q[snd_ch] + tx_8PSK_Q[snd_ch]);
tx_8PSK_df_Q[snd_ch] = 0.5f*(tx_8PSK_old_Q[snd_ch] - tx_8PSK_Q[snd_ch]);
}
if (modem_mode[snd_ch] == MODE_MPSK)
{
qbit = 0;
// get the bits for each of 4 carriers
for (i = 1; i <= 4; i++)
{
bit = 0;
if (tx_status[snd_ch] == TX_SILENCE)
{
tx_delay_cnt[snd_ch] = 0;
Debugprintf("Start TXD");
tx_status[snd_ch] = TX_DELAY;
}
if (tx_status[snd_ch] == TX_DELAY)
bit = get_new_bit_delay(snd_ch, bit);
if (tx_status[snd_ch] == TX_TAIL)
bit = get_new_bit_tail(snd_ch, bit);
if (tx_status[snd_ch] == TX_FRAME)
bit = get_new_bit(snd_ch, bit);
qbit = (qbit << 1) | bit;
}
tx_old_inv1[snd_ch] = tx_inv1[snd_ch];
tx_old_inv2[snd_ch] = tx_inv2[snd_ch];
tx_old_inv3[snd_ch] = tx_inv3[snd_ch];
tx_old_inv4[snd_ch] = tx_inv4[snd_ch];
if ((qbit & 8) == 0)
tx_inv1[snd_ch] = -tx_inv1[snd_ch];
if ((qbit & 4) == 0)
tx_inv2[snd_ch] = -tx_inv2[snd_ch];
if ((qbit & 2) == 0)
tx_inv3[snd_ch] = -tx_inv3[snd_ch];
if ((qbit & 1) == 0)
tx_inv4[snd_ch] = -tx_inv4[snd_ch];
}
}
if (tx_status[snd_ch] == TX_WAIT_BPF)
get_wait_bpf(snd_ch);
if (modem_mode[snd_ch] == MODE_FSK)
return amp * sinf(tx_osc[snd_ch]);
if (modem_mode[snd_ch] == MODE_BPSK)
return sinf(tx_osc[snd_ch]) * tx_bit_mod[snd_ch];
if (modem_mode[snd_ch] == MODE_QPSK || modem_mode[snd_ch] == MODE_8PSK || modem_mode[snd_ch] == MODE_PI4QPSK)
return sin(tx_osc[snd_ch]) * tx_I_mod[snd_ch] + cos(tx_osc[snd_ch]) * tx_Q_mod[snd_ch];
if (modem_mode[snd_ch] == MODE_MPSK)
return 0.35*(sinf(tx_osc1[snd_ch])*tx_bit1_mod[snd_ch] +
sinf(tx_osc2[snd_ch])*tx_bit2_mod[snd_ch] +
sinf(tx_osc3[snd_ch])*tx_bit3_mod[snd_ch] +
sinf(tx_osc4[snd_ch])*tx_bit4_mod[snd_ch]);
return 0.0f;
}
float make_samples_calib(UCHAR snd_ch, UCHAR tones)
{
float amp, pi2, x, x1;
x1 = pi * tx_baudrate[snd_ch] / TX_Samplerate;
pi2 = 2 * pi / TX_Samplerate;
switch (tones)
{
case 1:
tx_last_bit[snd_ch] = 1;
break;
case 2:
tx_last_bit[snd_ch] = 0;
break;
case 3:
tx_bit_osc[snd_ch] = tx_bit_osc[snd_ch] + x1;
if (tx_bit_osc[snd_ch] > pi)
{
tx_bit_osc[snd_ch] = tx_bit_osc[snd_ch] - pi;
tx_last_bit[snd_ch] = tx_last_bit[snd_ch] ^ 1;
}
break;
}
amp = 1;
if (tx_baudrate[snd_ch] > 600)
{
if (tx_hitoneraisedb[snd_ch] < 0 && tx_last_bit[snd_ch] == 0)
amp = tx_hitoneraise[snd_ch];
if (tx_hitoneraisedb[snd_ch] > 0 && tx_last_bit[snd_ch] == 1)
amp = tx_hitoneraise[snd_ch];
}
if (tx_last_bit[snd_ch] == 0)
x = pi2*(tx_freq[snd_ch] + 0.5f * tx_shift[snd_ch]);
else
x = pi2*(tx_freq[snd_ch] - 0.5f * tx_shift[snd_ch]);
tx_osc[snd_ch] = tx_osc[snd_ch] + x;
if (tx_osc[snd_ch] > 2*pi)
tx_osc[snd_ch] = tx_osc[snd_ch] - 2 * pi;
return amp * sinf(tx_osc[snd_ch]);
}
int amplitude = 22000;
void modulator(UCHAR snd_ch, int buf_size)
{
// We feed samples to samplesink instead of buffering them
// I think this is the top of the TX hierarchy
int i;
short Sample;
if (calib_mode[snd_ch] > 0)
{
if (calib_mode[snd_ch] == 4) // CWID
{
if (tx_status[snd_ch] == TX_SILENCE)
{
SoundIsPlaying = TRUE;
Debugprintf("Start CWID Chan %d", snd_ch);
RadioPTT(snd_ch, 1);
tx_status[snd_ch] = 6;
}
if (ARDOPSendToCard(snd_ch, SendSize) == 1)
{
// End of TX
tx_status[snd_ch] = TX_SILENCE; // Stop TX
Flush();
RadioPTT(snd_ch, 0);
Debugprintf("End CWID");
calib_mode[snd_ch] = 0;
}
return;
}
if (tx_status[snd_ch] == TX_SILENCE)
{
SoundIsPlaying = TRUE;
Debugprintf("Start Calib Chan %d", snd_ch);
RadioPTT(snd_ch, 1);
tx_bit_osc[snd_ch] = 0;
tx_last_bit[snd_ch] = 0;
// fill filter
for (i = 0; i < tx_BPF_tap[snd_ch]; i++)
tx_prev_BPF_buf[snd_ch][buf_size + i] = make_samples_calib(snd_ch,calib_mode[snd_ch]);
}
tx_status[snd_ch] = TX_WAIT_BPF;
for (i = 0; i < buf_size; i++)
tx_src_BPF_buf[snd_ch][i] = make_samples_calib(snd_ch, calib_mode[snd_ch]);
FIR_filter(tx_src_BPF_buf[snd_ch],buf_size,tx_BPF_tap[snd_ch],tx_BPF_core[snd_ch],tx_BPF_buf[snd_ch],tx_prev_BPF_buf[snd_ch]);
for (i = 0; i < buf_size; i++)
{
Sample = tx_BPF_buf[snd_ch][i] * amplitude;
SampleSink(modemtoSoundLR[snd_ch], Sample);
}
}
else
{
if (tx_status[snd_ch] == TX_SILENCE)
{
if (fx25_mode[snd_ch] == FX25_MODE_TXRX)
tx_fx25_mode[snd_ch] = 1;
else
tx_fx25_mode[snd_ch] = 0;
tx_bit_osc[snd_ch] = 0;
tx_8PSK[snd_ch] = 0;
tx_QPSK[snd_ch] = 0;
tx_last_bit[snd_ch] = 0;
tx_inv1[snd_ch] = 1;
tx_inv2[snd_ch] = 1;
tx_inv3[snd_ch] = 1;
tx_inv4[snd_ch] = 1;
tx_8PSK_I[snd_ch] = 0;
tx_8PSK_Q[snd_ch] = 1;
tx_8PSK_old_I[snd_ch] = 0;
tx_8PSK_old_Q[snd_ch] = 1;
tx_QPSK_I[snd_ch] = COS45;
tx_QPSK_Q[snd_ch] = COS45;
tx_QPSK_old_I[snd_ch] = COS45;
tx_QPSK_old_Q[snd_ch] = COS45;
for (i = 0; i < tx_BPF_tap[snd_ch]; i++)
tx_prev_BPF_buf[snd_ch][buf_size+i] = make_samples(snd_ch, &tx_pol[snd_ch]);
}
for (i = 0; i < buf_size; i++)
tx_src_BPF_buf[snd_ch][i] = make_samples(snd_ch, &tx_pol[snd_ch]);
FIR_filter(tx_src_BPF_buf[snd_ch], buf_size, tx_BPF_tap[snd_ch], tx_BPF_core[snd_ch], tx_BPF_buf[snd_ch], tx_prev_BPF_buf[snd_ch]);
for (i = 0; i < buf_size; i++)
{
Sample = tx_BPF_buf[snd_ch][i] * 20000.0f;
SampleSink(modemtoSoundLR[snd_ch], Sample);
}
}
}