qtsoundmodem/ax25_demod.c

4428 lines
102 KiB
C
Raw Normal View History

2023-09-04 19:06:44 +01:00
/*
Copyright (C) 2019-2020 Andrei Kopanchuk UZ7HO
This file is part of QtSoundModem
QtSoundModem is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
QtSoundModem is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with QtSoundModem. If not, see http://www.gnu.org/licenses
*/
// UZ7HO Soundmodem Port by John Wiseman G8BPQ
#include "UZ7HOStuff.h"
extern int blnBusyStatus;
extern word MEMRecovery[5];
void make_rx_frame_FX25(int snd_ch, int rcvr_nr, int emph, string * data);
string * memory_ARQ(TStringList * buf, string * data);
2024-10-29 22:45:21 +00:00
void CreateStringList(TStringList * List);
void analiz_frame(int snd_ch, string * frame, char * code, boolean fecflag);
void KISS_on_data_out(int port, string * frame, int TX);
void updateDCD(int Chan, boolean State);
void Frame_Optimize(TAX25Port * AX25Sess, TStringList * buf);
void RX2TX(int snd_ch);
int fx25_decode_rs(Byte * data, int * eras_pos, int no_eras, int pad, int rs_size);
void il2p_rec_bit(int chan, int subchan, int slice, int dbit);
2023-09-04 19:06:44 +01:00
float GuessCentreFreq(int i);
2023-09-12 21:38:15 +01:00
void ProcessRXFrames(int snd_ch);
extern struct il2p_context_s *il2p_context[4][16][3];
2023-09-04 19:06:44 +01:00
/*
unit ax25_demod;
interface
uses math,sysutils,Graphics,classes;
procedure detector_init;
procedure detector_free;
procedure Mux3(snd_ch,rcvr_nr,emph: byte; src1,core: array of single; var dest,prevI,prevQ: array of single; tap,buf_size: word);
procedure Mux3_PSK(snd_ch,rcvr_nr,emph: byte; src1,core: array of single; var destI,destQ,prevI,prevQ: array of single; tap,buf_size: word);
procedure make_core_intr(snd_ch: byte);
procedure make_core_LPF(snd_ch: byte; width: single);
procedure make_core_BPF(snd_ch: byte; freq,width: single);
procedure make_core_TXBPF(snd_ch: byte; freq,width: single);
procedure init_BPF(freq1,freq2: single; tap: word; samplerate: single; var buf: array of single);
procedure FIR_filter(src: array of single; buf_size,tap: word; core: array of single; var dest,prev: array of single);
procedure Demodulator(snd_ch,rcvr_nr: byte; src_buf: array of single; last: boolean);
function memory_ARQ(buf: TStringList; data: string): string;
type TSurvivor = record
BitEstimates: int64;
Pathdistance: integer;
}
type TMChannel = record
prev_LPF1I_buf : array [0..4095] of single;
prev_LPF1Q_buf : array [0..4095] of single;
prev_dLPFI_buf : array [0..4095] of single;
prev_dLPFQ_buf : array [0..4095] of single;
prev_AFCI_buf : array [0..4095] of single;
prev_AFCQ_buf : array [0..4095] of single;
AngleCorr : single;
MUX_osc : single;
AFC_IZ1 : single;
AFC_IZ2 : single;
AFC_QZ1 : single;
AFC_QZ2 : single;
AFC_bit_buf1I : array [0..1023] of single;
AFC_bit_buf1Q : array [0..1023] of single;
AFC_bit_buf2 : array [0..1023] of single;
AFC_IIZ1 : single;
AFC_QQZ1 : single;
}
*/
#define sbc 175
single ch_offset[4] = { -sbc * 1.5,-sbc * 0.5,sbc*0.5,sbc*1.5 };
float PI125 = 0.125f * M_PI;
float PI375 = 0.375f * M_PI;
float PI625 = 0.625f * M_PI;
float PI875 = 0.875f * M_PI;
float PI5 = 0.5f * M_PI;
float PI25 = 0.25f * M_PI;
float PI75 = 0.75f * M_PI;
unsigned char modem_mode[5] ={0,0,0,0};
unsigned short bpf[5] = { 500, 500, 500, 500,500 };
unsigned short lpf[5] = { 150, 150, 150, 150, 150 };
float BIT_AFC = 32;
float slottime_tick[5] = { 0 };
float resptime_tick[5] = { 0 };
int dcd_threshold = 128;
int rxOffset = 0;
int chanOffset[4] = { 0,0,0,0 };
float DCD_LastPkPos[5] = { 0 };
float DCD_LastPerc[5] = { 0 };
int dcd_bit_cnt[5] = { 0 };
Byte DCD_status[5] = { 0 };
float DCD_persist[5] = { 0 };
int dcd_bit_sync[5] = { 0 };
Byte dcd_hdr_cnt[5] = { 0 };
longword DCD_header[5] = { 0 };
int dcd_on_hdr[5] = { 0 };
extern int centreFreq[4];
2023-09-12 21:38:15 +01:00
float lastangle[4]; // pevious value for differential modes
2023-09-04 19:06:44 +01:00
unsigned short n_INTR[5] = { 1,1,1,1,1 };
unsigned short INTR_tap[5] = { 16, 16,16,16,16 };
unsigned short BPF_tap[5] = { 256, 256,256,256,256 }; // 256 default
unsigned short LPF_tap[5] = { 128, 128,128,128,128 }; // 128
short rx_freq[5] = { 1700, 1700,1700,1700,1700 };
short rx_shift[5] = { 200, 200, 200, 200, 200 };
short rx_baudrate[5] = { 300, 300, 300, 300, 300 };
short rcvr_offset[5] = { 30, 30, 30, 30,30 };
// rx_freq is configured freq. We shouldn't change it so need a sparate variable
// for the actual demod freq when using multiple decoders
short active_rx_freq[5] = { 1700, 1700,1700,1700,1700 };
int fx25_mode[4] = { 0, 0, 0, 0 };
int il2p_mode[4] = { 0, 0, 0, 0 };
2023-12-17 13:53:32 +00:00
int il2p_crc[4] = { 0, 0, 0, 0 };
2023-09-04 19:06:44 +01:00
int pnt_change[5] = { 0 };
float src_buf[5][2048];
float INTR_core[5][2048];
float AFC_core[5][2048];
float LPF_core[5][2048];
int new_tx_port[4] = { 0,0,0,0 };
UCHAR RCVR[5] = { 0 };
// We allow two (or more!) ports to be assigned to the same soundcard channel
int soundChannel[5] = { 0 }; // 0 = Unused 1 = Left 2 = Right 3 = Mono
int modemtoSoundLR[4] = { 0 };
struct TDetector_t DET[nr_emph + 1][16];
2023-09-12 21:38:15 +01:00
// Chan, Decoder, Emph
float Phases[4][16][nr_emph + 1][4096];
float Mags[4][16][nr_emph + 1][4096];
int nPhases[4][16][nr_emph + 1];
2023-09-04 19:06:44 +01:00
TStringList detect_list_l[5];
TStringList detect_list[5];
TStringList detect_list_c[5];
int lastDCDState[4] = { 0,0,0,0 };
/*
implementation
uses sm_main,ax25,ax25_l2,ax25_mod,ax25_agw,rsunit,kiss_mode;
*/
void detector_init()
{
int i, k, j;
for (k = 0; k < 16; k++)
{
for (i = 1; i <= 4; i++)
{
for (j = 0; j <= nr_emph; j++)
{
struct TDetector_t * pDET = &DET[j][k];
pDET->fx25[i].status = FX25_TAG;
pDET->AngleCorr[i] = 0;
pDET->last_sample[i] = 0;
pDET->sample_cnt[i] = 0;
pDET->last_bit[i] = 0;
pDET->PkAmp[i] = 0;
pDET->PkAmpMax[i] = 0;
pDET->newpkpos[i] = 0;
pDET->ones[i] = 0;
pDET->zeros[i] = 0;
pDET->MinAmp[i] = 0;
pDET->MaxAmp[i] = 0;
pDET->MUX3_osc[i] = 0;
pDET->Preemphasis6[i] = 0;
pDET->Preemphasis12[i] = 0;
pDET->PSK_AGC[i] = 0;
pDET->AGC[i] = 0;
pDET->AGC1[i] = 0;
pDET->AGC2[i] = 0;
pDET->AGC3[i] = 0;
pDET->AGC_max[i] = 0;
pDET->AGC_min[i] = 0;
pDET->AFC_IZ1[i] = 0;
pDET->AFC_IZ2[i] = 0;
pDET->AFC_QZ1[i] = 0;
pDET->AFC_QZ2[i] = 0;
pDET->AFC_dF[i] = 0;
pDET->AFC_cnt[i] = 0;
pDET->PSK_IZ1[i] = 0;
pDET->PSK_QZ1[i] = 0;
pDET->PkAmpI[i] = 0;
pDET->PkAmpQ[i] = 0;
pDET->last_rx_bit[i] = 0;
pDET->bit_stream[i] = 0;
pDET->byte_rx[i] = 0;
pDET->bit_stuff_cnt[i] = 0;
pDET->bit_cnt[i] = 0;
pDET->bit_osc[i] = 0;
pDET->frame_status[i] = 0;
initString(&pDET->FEC_rx_data[i]);
initString(&pDET->rx_data[i]);
initString(&pDET->raw_bits[i]);
initTStringList(&pDET->mem_ARQ_buf[i]);
initTStringList(&pDET->mem_ARQ_F_buf[i]);
pDET->rx_decoded = 0;
pDET->emph_decoded = 0;
}
}
}
for (i = 1; i <= 4; i++)
{
initTStringList(&detect_list[i]);
initTStringList(&detect_list_l[i]);
initTStringList(&detect_list_c[i]);
}
}
/*
procedure detector_free;
var
i,k,j: word;
{
for i = 1 to 4 do
{
detect_list[i].Free;
detect_list_l[i].Free;
detect_list_c[i].Free;
}
for k = 0 to 16 do
for i = 1 to 4 do
for j = 0 to nr_emph do
{
DET[j,k].mem_ARQ_buf[i].Free;
DET[j,k].mem_ARQ_F_buf[i].Free;
}
}
*/
void FIR_filter(float * src, unsigned short buf_size, unsigned short tap, float * core, float * dest, float * prev)
{
float accum = 0.0f;
float fp1;
int eax, ebx;
float * edi;
fmove(&prev[buf_size], &prev[0], tap * 4);
fmove(&src[0], &prev[tap], buf_size * 4);
eax = 0;
// ; shl ecx, 2;
// ; shl edx, 2;
cfir_i:
edi = prev;
edi += eax;
ebx = 0;
accum = 0.0f;
cfir_k:
// FLD pushes operand onto stack, so old value goes to fp1
fp1 = accum;
accum = edi[ebx];
accum *= core[ebx];
accum += fp1;
ebx++;
if (ebx != tap)
goto cfir_k;
dest[eax] = accum;
eax++;
if (eax != buf_size)
goto cfir_i;
}
float get_persist(int snd_ch, int persist)
{
single x, x1 ;
x = 256 / persist;
x1 = round(x*x) * rand() / RAND_MAX;
return x1 * 0.5 * slottime[snd_ch];
}
void chk_dcd1(int snd_ch, int buf_size)
{
// This seems to schedule all TX, but is only called when a frame has been processed
// ? does this work as Andy passes aborted frames to decoder
Byte port;
2024-07-23 21:26:30 +01:00
int i;
2023-09-04 19:06:44 +01:00
single tick;
word active;
boolean ind_dcd;
boolean dcd_sync;
longint n;
TAX25Port * AX25Sess;
dcd[snd_ch] = 1;
ind_dcd = 0;
tick = 1000 / RX_Samplerate;
if (modem_mode[snd_ch] == MODE_ARDOP)
{
dcd_bit_sync[snd_ch] = blnBusyStatus;
}
2023-09-12 21:38:15 +01:00
else if (modem_mode[snd_ch] == MODE_RUH)
{
dcd_bit_sync[snd_ch] = blnBusyStatus;
}
2023-09-04 19:06:44 +01:00
else
{
if (dcd_bit_cnt[snd_ch] > 0)
dcd_bit_sync[snd_ch] = 0;
else
dcd_bit_sync[snd_ch] = 1;
if (dcd_on_hdr[snd_ch])
dcd_bit_sync[snd_ch] = 1;
if (modem_mode[snd_ch] == MODE_MPSK && DET[0][0].frame_status[snd_ch] == FRAME_LOAD)
dcd_bit_sync[snd_ch] = 1;
}
if (lastDCDState[snd_ch] != dcd_bit_sync[snd_ch])
{
2024-10-29 22:45:21 +00:00
updateDCD(snd_ch, dcd_bit_sync[snd_ch]);
2023-09-04 19:06:44 +01:00
updateDCD(snd_ch, dcd_bit_sync[snd_ch]);
lastDCDState[snd_ch] = dcd_bit_sync[snd_ch];
}
if (resptime_tick[snd_ch] < resptime[snd_ch])
resptime_tick[snd_ch] = resptime_tick[snd_ch] + tick * buf_size;
slottime_tick[snd_ch] = slottime_tick[snd_ch] + tick * buf_size;
if (dcd_bit_sync[snd_ch]) // reset the slottime timer
{
slottime_tick[snd_ch] = 0;
DCD_status[snd_ch] = DCD_WAIT_SLOT;
}
switch (DCD_status[snd_ch])
{
case DCD_WAIT_SLOT:
if (slottime_tick[snd_ch] >= slottime[snd_ch])
{
DCD_status[snd_ch] = DCD_WAIT_PERSIST;
DCD_persist[snd_ch] = get_persist(snd_ch, persist[snd_ch]);
}
break;
case DCD_WAIT_PERSIST:
if (slottime_tick[snd_ch] >= slottime[snd_ch] + DCD_persist[snd_ch])
{
dcd[snd_ch] = FALSE;
slottime_tick[snd_ch] = 0;
DCD_status[snd_ch] = DCD_WAIT_SLOT;
}
break;
}
active = 0;
for (i = 0; i < port_num; i++)
{
if (AX25Port[snd_ch][i].status != STAT_NO_LINK)
active++;
if (active < 2)
resptime_tick[snd_ch] = resptime[snd_ch];
if (TX_rotate)
{
2024-07-23 21:26:30 +01:00
for (int n = 0; n < 4; n++)
2023-09-04 19:06:44 +01:00
{
2024-07-23 21:26:30 +01:00
if (snd_status[n] == SND_TX)
2023-09-04 19:06:44 +01:00
dcd[snd_ch] = TRUE;
}
}
if (snd_ch == 1)
snd_ch = 1;
if (!dcd[snd_ch] && resptime_tick[snd_ch] >= resptime[snd_ch])
{
2024-07-23 21:26:30 +01:00
int n = 0;
2023-09-04 19:06:44 +01:00
port = new_tx_port[snd_ch];
do
{
AX25Sess = &AX25Port[snd_ch][port];
if (AX25Sess->frame_buf.Count > 0)
Frame_Optimize(AX25Sess, &AX25Sess->frame_buf);
if (AX25Sess->frame_buf.Count > 0)
{
for (n = 0; n < AX25Sess->frame_buf.Count; n++)
{
Add(&all_frame_buf[snd_ch], duplicateString(Strings(&AX25Sess->frame_buf, n)));
}
Clear(&AX25Sess->frame_buf);
}
port++;
if (port >= port_num)
port = 0;
if (all_frame_buf[snd_ch].Count > 0)
new_tx_port[snd_ch] = port;
2024-07-23 21:26:30 +01:00
n++;
2023-09-04 19:06:44 +01:00
2024-07-23 21:26:30 +01:00
} while (all_frame_buf[snd_ch].Count == 0 && n < port_num);
2023-09-04 19:06:44 +01:00
// Add KISS frames
if (KISSServ)
{
// KISS monitor outgoing AGW frames
if (all_frame_buf[snd_ch].Count > 0)
{
2024-07-23 21:26:30 +01:00
for (int n = 0; n < all_frame_buf[snd_ch].Count; n++)
2023-09-04 19:06:44 +01:00
{
KISS_on_data_out(snd_ch, Strings(&all_frame_buf[snd_ch], n), 1); // Mon TX
}
}
// Add outgoing KISS frames to TX Q
if (KISS.buffer[snd_ch].Count > 0)
{
2024-07-23 21:26:30 +01:00
for (int k = 0; k < KISS.buffer[snd_ch].Count; k++)
2023-09-04 19:06:44 +01:00
{
if (AGWServ)
2024-12-28 12:31:37 +00:00
AGW_Raw_monitor(snd_ch, Strings(&KISS.buffer[snd_ch], k));
2023-09-04 19:06:44 +01:00
// Need to add copy as clear will free original
2024-07-23 21:26:30 +01:00
Add(&all_frame_buf[snd_ch], duplicateString(Strings(&KISS.buffer[snd_ch], k)));
2023-09-04 19:06:44 +01:00
}
Clear(&KISS.buffer[snd_ch]);
}
}
if (all_frame_buf[snd_ch].Count > 0 && snd_status[snd_ch] == SND_IDLE)
{
resptime_tick[snd_ch] = 0;
RX2TX(snd_ch); // Do TX
return;
}
}
}
}
string * get_pkt_data(string * stream)
{
Byte bitstuff_cnt;
Byte bits_cnt;
word i;
string * s = newString();
Byte bit;
Byte raw_bit;
Byte sym;
bits_cnt = 0;
bitstuff_cnt = 0;
sym = 0;
if (stream->Length > 0)
{
for (i = 0; i < stream->Length; i++)
{
if (stream->Data[i] == '1')
bit = RX_BIT1;
else
bit = RX_BIT0;
if (bitstuff_cnt < 5)
{
sym = (sym >> 1) | bit;
bits_cnt++;
}
if (bitstuff_cnt == 5 || bit == RX_BIT0)
bitstuff_cnt = 0;
if (bit == RX_BIT1)
bitstuff_cnt++;
if (bits_cnt == 8)
{
stringAdd(s, &sym, 1);
sym = 0;
bits_cnt = 0;
}
}
}
return s;
}
string * get_pkt_data2(string * stream, Byte last_nrzi_bit)
{
Byte bitstuff_cnt;
Byte bits_cnt;
word i;
string * s = newString();
Byte pkt[350];
Byte bit;
Byte raw_bit;
Byte sym;
int n = 0;
bits_cnt = 0;
bitstuff_cnt = 0;
sym = 0;
if (stream->Length > 0)
{
for (i = 0; i < stream->Length; i++)
{
if (stream->Data[i] == '1') raw_bit = RX_BIT1; else raw_bit = RX_BIT0;
if (raw_bit == last_nrzi_bit) bit = RX_BIT1; else bit = RX_BIT0;
last_nrzi_bit = raw_bit;
if (bitstuff_cnt < 5)
{
sym = (sym >> 1) | bit;
bits_cnt++;
}
if (bitstuff_cnt == 5 || bit == RX_BIT0)
bitstuff_cnt = 0;
if (bit == RX_BIT1)
bitstuff_cnt++;
if (bits_cnt == 8)
{
if (n < 330)
pkt[n++] = sym;
sym = 0;
bits_cnt = 0;
}
}
}
stringAdd(s, pkt, n);
return s;
}
string * get_NRZI_data(string * stream, UCHAR last_nrzi_bit)
{
longword len;
word i;
string * s = NULL;
Byte raw_bit;
len = stream->Length;
if (len > 65535)
len = 65535;
if (len > 0)
{
s = newString();
setlength(s, len);
for (i = 0; i < len; i++)
{
if (stream->Data[i] == '1')
raw_bit = RX_BIT1;
else
raw_bit = RX_BIT0;
if (raw_bit == last_nrzi_bit)
s->Data[i] = '1';
else
s->Data[i] = '0';
last_nrzi_bit = raw_bit;
}
}
return s;
}
/*
function invert_NRZI_data(stream: string; last_nrzi_bit: byte): string;
var
len: longword;
i: word;
s: string;
{
s = '';
len = length(stream);
if len>65535 then len = 65535;
if len>0 then
{
setlength(s,len);
for i = 1 to len do
if last_nrzi_bit=RX_BIT0 then
{
if stream[i]='1' then s[i] = '0' else s[i] = '1';
end
else s[i] = stream[i];
}
result = s;
}
*/
void make_rx_frame(int snd_ch, int rcvr_nr, int emph, Byte last_nrzi_bit, string * raw_data, string * raw_data1)
{
int swap_i, swap_k;
string * data;
string * nrzi_data;
longword raw_len;
word len, crc1, crc2;
int arq_mem = 0;
string s;
int i, k, n;
unsigned char * raw;
unsigned char * raw1;
char Mode[16] = "";
struct TDetector_t * pDET = &DET[emph][rcvr_nr];
// Decode RAW-stream
raw_len = raw_data->Length;
if (raw_len < 80)
return;
mydelete(raw_data, raw_len - 6, 7); // Does this remove trailing flag
raw_len = raw_data->Length;
nrzi_data = get_NRZI_data(raw_data, last_nrzi_bit);
if (nrzi_data == NULL)
return;
// data = newString();
data = get_pkt_data(nrzi_data);
len = data->Length;
if (len < pkt_raw_min_len)
{
freeString(nrzi_data);
freeString(data);
return;
}
crc1 = get_fcs(data->Data, len - 2);
crc2 = (data->Data[len - 1] << 8) | data->Data[len - 2];
// MEM recovery
arq_mem = FALSE;
if (raw_len > 2970)
freeString(nrzi_data);
else
{
Add(&pDET->mem_ARQ_buf[snd_ch], nrzi_data);
if (pDET->mem_ARQ_buf[snd_ch].Count > MEMRecovery[snd_ch])
Delete(&pDET->mem_ARQ_buf[snd_ch], 0);
if (crc1 != crc2)
{
freeString(data);
data = get_pkt_data(memory_ARQ(&pDET->mem_ARQ_buf[snd_ch], nrzi_data));
crc1 = get_fcs(data->Data, len - 2);
arq_mem = TRUE;
}
}
if (crc1 == crc2)
{
if (arq_mem)
{
Debugprintf("Good CRC after Memory ARQ correction %x Len %d chan %d rcvr %d emph %d", crc1, len, snd_ch, rcvr_nr, emph);
stat_r_mem++;
pDET->emph_decoded = 2; //MEM
pDET->rx_decoded = decodedMEM;
}
else
{
Debugprintf("Good CRC %x Len %d chan %d rcvr %d emph %d", crc1, len, snd_ch, rcvr_nr, emph);
pDET->rx_decoded = decodedNormal;
pDET->emph_decoded = 4; //Normal
}
if (detect_list[snd_ch].Count > 0 &&
my_indexof(&detect_list[snd_ch], data) >= 0)
{
// Already have a copy of this frame
freeString(data);
Debugprintf("Discarding copy rcvr %d emph %d", rcvr_nr, emph);
return;
}
string * xx = newString();
memset(xx->Data, 0, 16);
sprintf(Mode, "AX25 %d", centreFreq[snd_ch]);
Add(&detect_list_c[snd_ch], xx);
Add(&detect_list[snd_ch], data);
if (arq_mem)
stringAdd(xx, "MEM", 3);
else
stringAdd(xx, "", 0);
sprintf(Mode, "AX25 %d", centreFreq[snd_ch]);
stringAdd(xx, Mode, strlen(Mode));
return;
}
// Single bit recovery
freeString(data); // finished with original
if (recovery[snd_ch] == 0 || raw_len > 2970)
return;
raw = raw_data->Data;
raw1 = raw_data1->Data;
for (i = 0; i < raw_len; i++)
{
if (raw[i] != raw1[i])
{
//change bit
raw[i] ^= 1;
// get new data
data = get_pkt_data2(raw_data, last_nrzi_bit);
//restore bit
raw[i] ^= 1;
len = data->Length;
if (len > pkt_raw_min_len)
{
crc1 = get_fcs(data->Data, len - 2);
crc2 = (data->Data[len - 1] << 8) | data->Data[len - 2];
if (crc1 == crc2)
{
Debugprintf("Good CRC after single bit correction %x Len %d chan %d rcvr %d emph %d", crc1, len, snd_ch, rcvr_nr, emph);
if (detect_list[snd_ch].Count > 0 &&
my_indexof(&detect_list[snd_ch], data) >=- 0)
{
// Already have a copy of this frame
Debugprintf("Discarding copy rcvr %d, emph %d", rcvr_nr, emph);
freeString(data);
return;
}
string * xx = newString();
memset(xx->Data, 0, 16);
Add(&detect_list_c[snd_ch], xx);
Add(&detect_list[snd_ch], data);
stringAdd(xx, "SINGLE", 3);
pDET->rx_decoded = decodedSingle;
pDET->emph_decoded = 1; //SINGLE
return;
}
}
freeString(data); // finished with original
}
}
}
int lastcrc = 0;
void make_rx_frame_PSK(int snd_ch, int rcvr_nr, int emph, string * data)
{
word len, crc1, crc2;
len = data->Length;
if (len < pkt_raw_min_len)
return;
crc1 = get_fcs(data->Data, len - 2);
crc2 = (data->Data[len - 1] << 8) | data->Data[len - 2];
if (crc1 == crc2)
{
struct TDetector_t * pDET = &DET[emph][rcvr_nr];
Debugprintf("Good CRC %x Len %d chan %d rcvr %d emph %d", crc1, len, snd_ch, rcvr_nr, emph);
pDET->rx_decoded = decodedNormal;
pDET->emph_decoded = 4; //Normal
if (detect_list[snd_ch].Count > 0 &&
my_indexof(&detect_list[snd_ch], data) >= 0)
{
// Already have a copy of this frame
Debugprintf("Discarding copy rcvr %d emph %d", rcvr_nr, emph);
return;
}
string * xx = newString();
memset(xx->Data, 0, 16);
Add(&detect_list_c[snd_ch], xx);
xx = duplicateString(data);
Add(&detect_list[snd_ch], xx);
}
}
/*
function memory_ARQ_FEC(buf: TStringList; data: string): string;
var
len,i,k: integer;
s,temp: string;
new_blk,temp_blk: TStringList;
n,err: byte;
done: boolean;
{
s = '';
if data='' then { result = s; exit; }
new_blk = TStringList.Create;
temp_blk = TStringList.Create;
temp = data;
len = length(data);
// Split new data;
repeat
n = ord(temp[1]) and $7F;
err = ord(temp[1]) and $80;
if err=0 then new_blk.Add(copy(temp,2,n)) else new_blk.Add('');
delete(temp,1,n+1);
until temp='';
// Search blocks
if (buf.Count>0) and (new_blk.Count>0) then
{
i = 0;
repeat
// If length is the same
if length(buf.Strings[i])=len then
{
temp = buf.Strings[i];
// If last 4 bytes is the same
if copy(temp,len-3,4)=copy(data,len-3,4) then
{
temp_blk.Clear;
repeat
n = ord(temp[1]) and $7F;
err = ord(temp[1]) and $80;
if err=0 then temp_blk.Add(copy(temp,2,n)) else temp_blk.Add('');
delete(temp,1,n+1);
until temp='';
// Add new parts
if new_blk.Count=temp_blk.Count then
{
done = TRUE;
for k = 0 to new_blk.Count-1 do
{
if (new_blk.Strings[k]='') and (temp_blk.Strings[k]<>'') then
new_blk.Strings[k] = temp_blk.Strings[k];
// Check if no empty data
if new_blk.Strings[k]='' then done = FALSE;
}
}
}
}
inc(i);
until (i=buf.Count) or done;
if done then for k = 0 to new_blk.Count-1 do s = s+new_blk.Strings[k];
}
result = s;
new_blk.Free;
temp_blk.Free
}
procedure add_to_ARQ_FEC(buf: TStringList; data: string);
{
if buf.Count=50 then buf.Delete(0);
buf.Add(data);
}
*/
void make_rx_frame_FEC(int snd_ch, int rcvr_nr, string * data, string * fec_data, word nErr)
{
}
/*var
len,crc1,crc2: word;
s: string;
i,k,n: word;
{
len = length(data);
if len<17 then exit;
crc1 = get_fcs(data,len-2);
crc2 = (ord(data[len]) shl 8) or ord(data[len-1]);
if crc1=crc2 then
{
if detect_list[snd_ch].Count>0 then
{
//if detect_list[snd_ch].IndexOf(data)<0 then
if my_indexof(detect_list[snd_ch],data)<0 then
{
detect_list[snd_ch].Add(data);
detect_list_c[snd_ch].Add('Err: '+inttostr(nErr));
}
end
else
{
detect_list[snd_ch].Add(data);
detect_list_c[snd_ch].Add('Err: '+inttostr(nErr));
}
add_to_ARQ_FEC(DET[0,rcvr_nr].mem_ARQ_F_buf[snd_ch],fec_data);
}
if crc1<>crc2 then
{
data = memory_ARQ_FEC(DET[0,rcvr_nr].mem_ARQ_F_buf[snd_ch],fec_data);
add_to_ARQ_FEC(DET[0,rcvr_nr].mem_ARQ_F_buf[snd_ch],fec_data);
if data<>'' then
{
len = length(data);
crc1 = get_fcs(data,len-2);
crc2 = (ord(data[len]) shl 8) or ord(data[len-1]);
if crc1=crc2 then
{
if detect_list[snd_ch].Count>0 then
{
//if detect_list[snd_ch].IndexOf(data)<0 then
if my_indexof(detect_list[snd_ch],data)<0 then
{
detect_list[snd_ch].Add(data);
detect_list_c[snd_ch].Add('MEM Err: '+inttostr(nErr));
}
end
else
{
detect_list[snd_ch].Add(data);
detect_list_c[snd_ch].Add('MEM Err: '+inttostr(nErr));
}
}
}
}
}
*/
//////////////////////////// PLL-Peak-detector ////////////////////////////
void Mux3(int snd_ch, int rcvr_nr, int emph, float * src1, float * core, float *dest, float * prevI, float * prevQ, int tap, int buf_size)
{
float pi2 = 2 * pi;
int i;
float x;
float acc1, acc2, acc3, mag;
int tap4;
int tap_cnt;
unsigned int ii, kk;
float Preemphasis6, Preemphasis12, MUX3_osc, AGC;
float AFC_IZ1, AFC_QZ1, AFC_IZ2, AFC_QZ2;
// looks like this is an LPF
// Get local copy of this detectors variables
struct TDetector_t * pDET = &DET[emph][rcvr_nr];
Preemphasis6 = pDET->Preemphasis6[snd_ch];
Preemphasis12 = pDET->Preemphasis12[snd_ch];
MUX3_osc = pDET->MUX3_osc[snd_ch];
AGC = pDET->AGC[snd_ch];
AFC_IZ2 = pDET->AFC_IZ2[snd_ch];
AFC_QZ2 = pDET->AFC_QZ2[snd_ch];
AFC_QZ1 = pDET->AFC_QZ1[snd_ch];
AFC_IZ1 = pDET->AFC_IZ1[snd_ch];
//
tap4 = tap * 4;
x = active_rx_freq[snd_ch] * pi2 / RX_Samplerate;
fmove(&prevI[buf_size], &prevI[0], tap4);
fmove(&prevQ[buf_size], &prevQ[0], tap4);
tap_cnt = tap;
if (prevI[128] != prevI[128])
prevI[128] = 0;
for (i = 0; i < buf_size; i++)
{
// Pre-emphasis 6dB
if (emph > 0)
{
acc1 = Preemphasis6 - src1[i];
Preemphasis6 = src1[i];
src1[i] = acc1;
}
// Pre-emphasis 12dB
if (emph > 1)
{
acc1 = Preemphasis12 - src1[i];
Preemphasis12 = src1[i];
src1[i] = acc1;
}
//
MUX3_osc = MUX3_osc + x;
if (MUX3_osc > pi2)
MUX3_osc = MUX3_osc - pi2;
if (src1[i] != src1[i])
src1[i] = 0;
if (prevI[128] != prevI[128])
prevI[128] = 0;
prevI[tap_cnt] = src1[i] * sinf(MUX3_osc);
prevQ[tap_cnt] = src1[i] * cosf(MUX3_osc);
if (prevI[128] != prevI[128])
prevI[tap_cnt] = src1[i] * sinf(MUX3_osc);
if (prevI[128] != prevI[128])
prevI[128] = 0;
/*
mag = sqrtf(prevI[tap_cnt] * prevI[tap_cnt] + prevQ[tap_cnt] * prevQ[tap_cnt]);
DET[emph][rcvr_nr].AGC1[snd_ch] = 0.5*DET[emph][rcvr_nr].AGC1[snd_ch] + 0.5*mag;
AGC = 0.5*AGC + 0.5*DET[emph][rcvr_nr].AGC1[snd_ch];
if (AGC > 1)
begin
prevI[tap_cnt] = prevI[tap_cnt] / AGC;
prevQ[tap_cnt] = prevQ[tap_cnt] / AGC;
end
*/
// Fast AGC
mag = sqrtf(prevI[tap_cnt] * prevI[tap_cnt] + prevQ[tap_cnt] * prevQ[tap_cnt]);
AGC = 0.5 * AGC + 0.5 *mag;
if (AGC > 1)
{
prevI[tap_cnt] = prevI[tap_cnt] / AGC;
prevQ[tap_cnt] = prevQ[tap_cnt] / AGC;
}
ii = i << 2;
kk = tap << 2;
// C version of delphi asm code below
{
float accum = 0.0f;
float fp1;
int ebx;
float * edi;
edi = &prevI[i];
ebx = 0;
accum = 0.0f;
fsk_k1:
// FLD pushes operand onto stack, so old value goes to fp1
fp1 = accum;
accum = edi[ebx];
if (accum != accum)
accum = 0;
accum *= core[ebx];
if (accum != accum)
accum = 0;
accum += fp1;
if (accum != accum)
accum = 0;
ebx++;
if (ebx != tap)
goto fsk_k1;
acc1 = accum;
if (acc1 != acc1)
acc1 = 0;
edi = &prevQ[i];
ebx = 0;
accum = 0.0f;
fsk_k2:
fp1 = accum;
accum = edi[ebx];
accum *= core[ebx];
accum += fp1;
ebx++;
if (ebx != tap)
goto fsk_k2;
acc2 = accum;
}
if (acc1 != acc1)
acc1 = 0;
tap_cnt++;
/// PLL-Detector ///
dest[i] = (acc1 - AFC_IZ2)*AFC_QZ1 - (acc2 - AFC_QZ2)*AFC_IZ1;
// Check for NAN
if (dest[i] != dest[i])
dest[i] = 0.0f;
AFC_IZ2 = AFC_IZ1;
AFC_QZ2 = AFC_QZ1;
AFC_IZ1 = acc1;
AFC_QZ1 = acc2;
}
pDET->Preemphasis6[snd_ch] = Preemphasis6;
pDET->Preemphasis12[snd_ch] = Preemphasis12;
pDET->MUX3_osc[snd_ch] = MUX3_osc;
pDET->AGC[snd_ch] = AGC;
pDET->AFC_IZ2[snd_ch] = AFC_IZ2;
pDET->AFC_QZ2[snd_ch] = AFC_QZ2;
pDET->AFC_QZ1[snd_ch] = AFC_QZ1;
pDET->AFC_IZ1[snd_ch] = AFC_IZ1;
}
void Mux3_PSK(int snd_ch, int rcvr_nr, int emph, float * src1, float * core, float *destI, float *destQ, float * prevI, float * prevQ, int tap, int buf_size)
{
float pi2 = 2 * pi;
int i;
float x;
float acc1, acc2, mag;
int tap4;
int prev_cnt, tap_cnt;
float Preemphasis6, Preemphasis12, MUX3_osc;
// looks like this is an LPF
// Get local copy of this detectors variables
struct TDetector_t * pDET = &DET[emph][rcvr_nr];
Preemphasis6 = pDET->Preemphasis6[snd_ch];
Preemphasis12 = pDET->Preemphasis12[snd_ch];
MUX3_osc = pDET->MUX3_osc[snd_ch];
tap4 = tap * 4;
x = active_rx_freq[snd_ch] * pi2 / RX_Samplerate;
fmove(&prevI[buf_size], &prevI[0], tap4);
fmove(&prevQ[buf_size], &prevQ[0], tap4);
tap_cnt = tap;
if (prevI[128] != prevI[128])
prevI[128] = 0;
for (i = 0; i < buf_size; i++)
{
// Pre-emphasis 6dB
if (emph > 0)
{
acc1 = Preemphasis6 - src1[i];
Preemphasis6 = src1[i];
src1[i] = acc1;
}
// Pre-emphasis 12dB
if (emph > 1)
{
acc1 = Preemphasis12 - src1[i];
Preemphasis12 = src1[i];
src1[i] = acc1;
}
MUX3_osc = MUX3_osc + x;
if (MUX3_osc > pi2)
MUX3_osc = MUX3_osc - pi2;
prevI[tap_cnt] = src1[i] * sinf(MUX3_osc);
prevQ[tap_cnt] = src1[i] * cosf(MUX3_osc);
// C version of delphi asm code
{
float accum = 0.0f;
float fp1;
int ebx;
float * edi;
edi = &prevI[i];
ebx = 0;
accum = 0.0f;
fsk_k1:
// FLD pushes operand onto stack, so old value goes to fp1
fp1 = accum;
accum = edi[ebx];
accum *= core[ebx];
accum += fp1;
ebx++;
if (ebx != tap)
goto fsk_k1;
acc1 = accum;
edi = &prevQ[i];
ebx = 0;
accum = 0.0f;
fsk_k2:
fp1 = accum;
accum = edi[ebx];
accum *= core[ebx];
accum += fp1;
ebx++;
if (ebx != tap)
goto fsk_k2;
acc2 = accum;
}
if (acc1 != acc1)
acc1 = 0;
tap_cnt++;
destI[i] = acc1;
destQ[i] = acc2;
}
pDET->Preemphasis6[snd_ch] = Preemphasis6;
pDET->Preemphasis12[snd_ch] = Preemphasis12;
pDET->MUX3_osc[snd_ch] = MUX3_osc;
}
int stats[2] = { 0 };
#define dcd_corr 0.11111f
void decode_stream_MPSK(int snd_ch, int rcvr_nr, float * src, int buf_size, int last)
{
2023-09-12 21:38:15 +01:00
#ifndef XXXX
2023-09-04 19:06:44 +01:00
// Until ASM is converted
return;
}
#else
float pi2 = 2 * pi;
#define NR_FEC_CH 3
float agc_fast = 0.01f;
float agc_fast1 = 1 - agc_fast;
float agc_slow = agc_fast / 4;
float agc_slow1 = 1 - agc_slow;
word dcnt, dsize;
word i, k, j, j1, j2, j3;
single x, x1;
single amp, acc1, acc2;
single sumI, sumQ, sumIQ, muxI, muxQ;
word tap_cnt, tap_cnt1;
single afc_lim;
word i_tap, tap;
single AFC, k1, k2, freq;
single maxval, div_bit_afc, baudrate;
word max_cnt;
single AmpI, AmpQ, angle, muxI1, muxQ1, muxI2, muxQ2, sumIQ1, sumIQ2;
single AFC_acc1, AFC_acc2;
single BIT_acc1, BIT_acc2;
integer AFC_newpkpos;
//
single threshol;
single tr;
Byte fec_ch, bit;
longword ii, kk;
single * core, *prevI, *prevQ;
//
unsigned long long bit64 = 0;
boolean hdr_ok;
Byte fec_code;
string fec_data_blk;
string line1;
Byte line[512];
int linelen = 0;
integer nErr;
word crc1, crc2, size;
Byte hdr_byte[15] = "";
tr = dcd_threshold * dcd_corr;
if (last)
{
if (dcd_hdr_cnt[snd_ch] == 0)
dcd_on_hdr[snd_ch] = 0;
dcd_bit_cnt[snd_ch] = 0;
}
baudrate = 400;
div_bit_afc = 1.0f / roundf(BIT_AFC*(RX_Samplerate / 11025));
x1 = baudrate / RX_Samplerate;
max_cnt = roundf(RX_Samplerate / baudrate);
//
afc_lim = rx_baudrate[snd_ch] * 0.1f;
dsize = buf_size / n_INTR[snd_ch];
tap = LPF_tap[snd_ch];
i_tap = INTR_tap[snd_ch];
freq = active_rx_freq[snd_ch];
for (fec_ch = 0; fec_ch <= NR_FEC_CH; fec_ch++)
{
struct TMChannel_t * pMChan = &DET[0][rcvr_nr].MChannel[snd_ch][fec_ch];
fmove(&pMChan->prev_dLPFI_buf[buf_size], &pMChan->prev_dLPFI_buf[0], i_tap * 4);
fmove(&pMChan->prev_dLPFQ_buf[buf_size], &pMChan->prev_dLPFQ_buf[0], i_tap * 4);
fmove(&pMChan->prev_LPF1I_buf[dsize], &pMChan->prev_LPF1I_buf[0], tap * 4);
fmove(&pMChan->prev_LPF1Q_buf[dsize], &pMChan->prev_LPF1Q_buf[0], tap * 4);
fmove(&pMChan->prev_AFCI_buf[dsize], &pMChan->prev_AFCI_buf[0], tap * 4);
fmove(&pMChan->prev_AFCQ_buf[dsize], &pMChan->prev_AFCQ_buf[0], tap * 4);
}
tap_cnt = i_tap;
tap_cnt1 = tap;
dcnt = 0;
k = 0;
for (i = 0; i < buf_size; i++)
{
for (fec_ch = 0; fec_ch <= NR_FEC_CH; fec_ch++)
{
struct TDetector_t * pDET = &DET[0][rcvr_nr];
x = (freq + pDET->AFC_dF[snd_ch] + ch_offset[fec_ch])*pi2 / RX_Samplerate;
struct TMChannel_t * pMChan = &pDET->MChannel[snd_ch][fec_ch];
{
pMChan->MUX_osc = pMChan->MUX_osc + x;
if (pMChan->MUX_osc > pi2)
pMChan->MUX_osc = pMChan->MUX_osc - pi2;
pMChan->prev_dLPFI_buf[tap_cnt] = src[i] * sinf(pMChan->MUX_osc);
pMChan->prev_dLPFQ_buf[tap_cnt] = src[i] * cosf(pMChan->MUX_osc);
prevI = pMChan->prev_dLPFI_buf;
prevQ = pMChan->prev_dLPFQ_buf;
core = INTR_core[snd_ch];
// Decimation filter
ii = i << 2;
kk = i_tap << 2;
_asm
{
push eax;
push ebx;
push edi;
push esi;
mov edi, prevI;
mov esi, core;
add edi, ii;
mov eax, kk;
xor ebx, ebx;
fldz;
lk1:
fld dword ptr[edi + ebx];
fmul dword ptr[esi + ebx];
fadd;
add ebx, 4;
cmp ebx, eax;
jne lk1;
fstp dword ptr acc1;
wait;
mov edi, prevQ;
add edi, ii;
xor ebx, ebx;
fldz;
lk2:
fld dword ptr[edi + ebx];
fmul dword ptr[esi + ebx];
fadd;
add ebx, 4;
cmp ebx, eax;
jne lk2;
fstp dword ptr acc2;
wait;
pop esi;
pop edi;
pop ebx;
pop eax;
}
}
if (fec_ch == NR_FEC_CH)
tap_cnt++;
// Decimation
if (dcnt == 0)
{
{
pMChan->prev_LPF1I_buf[tap_cnt1] = acc1;
pMChan->prev_LPF1Q_buf[tap_cnt1] = acc2;
pMChan->prev_AFCI_buf[tap_cnt1] = acc1;
pMChan->prev_AFCQ_buf[tap_cnt1] = acc2;
// Bit-filter
prevI = pMChan->prev_LPF1I_buf;
prevQ = pMChan->prev_LPF1Q_buf;
core = LPF_core[snd_ch];
ii = k << 2;
kk = tap << 2;
__asm
{
push eax;
push ebx;
push edi;
push esi;
mov edi, prevI;
mov esi, core;
add edi, ii;
mov eax, kk;
xor ebx, ebx;
fldz;
xk1:
fld dword ptr[edi + ebx];
fmul dword ptr[esi + ebx];
fadd;
add ebx, 4;
cmp ebx, eax;
jne xk1;
fstp dword ptr BIT_acc1;
wait;
mov edi, prevQ;
add edi, ii;
xor ebx, ebx;
fldz;
xk2:
fld dword ptr[edi + ebx];
fmul dword ptr[esi + ebx];
fadd;
add ebx, 4;
cmp ebx, eax;
jne xk2;
fstp dword ptr BIT_acc2;
wait;
pop esi;
pop edi;
pop ebx;
pop eax;
}
// AFC-filter
prevI = pMChan->prev_AFCI_buf;
prevQ = pMChan->prev_AFCQ_buf;
core = AFC_core[snd_ch];
ii = k << 2;
kk = tap << 2;
_asm
{
push eax;
push ebx;
push edi;
push esi;
mov edi, prevI;
mov esi, core;
add edi, ii;
mov eax, kk;
xor ebx, ebx;
fldz;
xxk1:
fld dword ptr[edi + ebx];
fmul dword ptr[esi + ebx];
fadd;
add ebx, 4;
cmp ebx, eax;
jne xxk1;
fstp dword ptr AFC_acc1;
wait;
mov edi, prevQ;
add edi, ii;
xor ebx, ebx;
fldz;
xxk2:
fld dword ptr[edi + ebx];
fmul dword ptr[esi + ebx];
fadd;
add ebx, 4;
cmp ebx, eax;
jne xxk2;
fstp dword ptr AFC_acc2;
wait;
pop esi;
pop edi;
pop ebx;
pop eax;
}
}
// AGC
amp = sqrtf(BIT_acc1*BIT_acc1 + BIT_acc2 * BIT_acc2);
if (amp > pDET->PSK_AGC[snd_ch])
pDET->PSK_AGC[snd_ch] = pDET->PSK_AGC[snd_ch] * agc_fast1 + amp*agc_fast;
else
pDET->PSK_AGC[snd_ch] = pDET->PSK_AGC[snd_ch] * agc_slow1 + amp*agc_slow;
if (pDET->PSK_AGC[snd_ch] > 1)
{
BIT_acc1 = BIT_acc1 / pDET->PSK_AGC[snd_ch];
BIT_acc2 = BIT_acc2 / pDET->PSK_AGC[snd_ch];
AFC_acc1 = AFC_acc1 / pDET->PSK_AGC[snd_ch];
AFC_acc2 = AFC_acc2 / pDET->PSK_AGC[snd_ch];
amp = amp / pDET->PSK_AGC[snd_ch];
}
// AFC Correction
sumIQ = (AFC_acc1 - pMChan->AFC_IZ2)*pMChan->AFC_QZ1 - (AFC_acc2 - pMChan->AFC_QZ2)*pMChan->AFC_IZ1;
pMChan->AFC_IZ2 = pMChan->AFC_IZ1;
pMChan->AFC_QZ2 = pMChan->AFC_QZ1;
pMChan->AFC_IZ1 = AFC_acc1;
pMChan->AFC_QZ1 = AFC_acc2;
pDET->AFC_dF[snd_ch] = pDET->AFC_dF[snd_ch] - sumIQ * 0.07f; // AFC_LPF=1
if (pDET->AFC_dF[snd_ch] > afc_lim)
pDET->AFC_dF[snd_ch] = afc_lim;
if (pDET->AFC_dF[snd_ch] < -afc_lim)
pDET->AFC_dF[snd_ch] = -afc_lim;
pMChan->AFC_bit_buf1I[pDET->AFC_cnt[snd_ch]] = BIT_acc1;
pMChan->AFC_bit_buf1Q[pDET->AFC_cnt[snd_ch]] = BIT_acc2;
pMChan->AFC_bit_buf2[pDET->AFC_cnt[snd_ch]] = amp;
if (fec_ch == NR_FEC_CH)
{
pDET->AFC_cnt[snd_ch]++;
pDET->AFC_bit_osc[snd_ch] = pDET->AFC_bit_osc[snd_ch] + x1;
if (pDET->AFC_bit_osc[snd_ch] >= 1)
{
// Find the maximum in the synchronization buffer
for (j = 0; j <= NR_FEC_CH; j++)
{
struct TMChannel_t * pMChan = &pDET->MChannel[snd_ch][j];
maxval = 0;
for (j1 = 0; j1 < pDET->AFC_cnt[snd_ch]; j1++)
{
amp = pMChan->AFC_bit_buf2[j1];
pDET->AFC_bit_buf[snd_ch][j1] = pDET->AFC_bit_buf[snd_ch][j1] * 0.95 + amp*0.05;
if (pDET->AFC_bit_buf[snd_ch][j1] > maxval)
{
{
AFC_newpkpos = j1;
maxval = pDET->AFC_bit_buf[snd_ch][j1];
}
}
k1 = 1.0f *AFC_newpkpos / (pDET->AFC_cnt[snd_ch] - 1);
k2 = pila(k1) - 1;
//AFC = div_bit_afc*k2;
AFC = div_bit_afc * k2*0.25; //for 4 carriers
if (k1 > 0.5)
pDET->AFC_bit_osc[snd_ch] = pDET->AFC_bit_osc[snd_ch] + AFC;
else
pDET->AFC_bit_osc[snd_ch] = pDET->AFC_bit_osc[snd_ch] - AFC;
//DCD feature
if (last)
{
DCD_LastPkPos[snd_ch] = DCD_LastPkPos[snd_ch] * 0.96f + AFC_newpkpos * 0.04f;
DCD_LastPerc[snd_ch] = DCD_LastPerc[snd_ch] * 0.96f + abs(AFC_newpkpos - DCD_LastPkPos[snd_ch])*0.04f;
if (DCD_LastPerc[snd_ch] >= tr || DCD_LastPerc[snd_ch] < 0.00001f)
dcd_bit_cnt[snd_ch] = dcd_bit_cnt[snd_ch] + 1;
else
dcd_bit_cnt[snd_ch] = dcd_bit_cnt[snd_ch] - 1;
}
}
// Bit-detector
AmpI = pMChan->AFC_bit_buf1I[AFC_newpkpos];
AmpQ = pMChan->AFC_bit_buf1Q[AFC_newpkpos];
muxI1 = AmpI * pMChan->AFC_IIZ1;
muxI2 = AmpQ * pMChan->AFC_IIZ1;
muxQ1 = AmpQ * pMChan->AFC_QQZ1;
muxQ2 = AmpI * pMChan->AFC_QQZ1;
sumIQ1 = muxI1 + muxQ1;
sumIQ2 = muxI2 - muxQ2;
angle = atan2f(sumIQ2, sumIQ1);
pMChan->AFC_IIZ1 = AmpI;
pMChan->AFC_QQZ1 = AmpQ;
// Phase corrector
if (fabsf(angle) < PI5)
pMChan->AngleCorr = pMChan->AngleCorr * 0.9f - angle * 0.1f;
else
{
if (angle > 0)
pMChan->AngleCorr = pMChan->AngleCorr * 0.9f + (pi - angle)*0.1f;
else
pMChan->AngleCorr = pMChan->AngleCorr * 0.9f + (-pi - angle)*0.1f;
}
angle = angle + pMChan->AngleCorr;
if (fabsf(angle) < PI5)
bit = RX_BIT1;
else
bit = RX_BIT0;
// DCD on flag
if (last)
{
if (dcd_hdr_cnt[snd_ch] > 0)
dcd_hdr_cnt[snd_ch]--;
DCD_header[snd_ch] = (DCD_header[snd_ch] >> 1) | (bit << 24);
if ((DCD_header[snd_ch] & 0xFFFF0000) == 0x7E7E0000 ||
(DCD_header[snd_ch] & 0xFFFFFF00) == 0x7E000000 ||
(DCD_header[snd_ch] & 0xFFFFFF00) == 0x00000000)
{
dcd_hdr_cnt[snd_ch] = 48;
dcd_on_hdr[snd_ch] = TRUE;
}
}
// header stream
bit64 = bit;
bit64 <<= 56;
pDET->FEC_header1[snd_ch][1] = (pDET->FEC_header1[snd_ch][1] >> 1) | (pDET->FEC_header1[snd_ch][0] << 63);
pDET->FEC_header1[snd_ch][0] = (pDET->FEC_header1[snd_ch][0] >> 1) | bit64;
// copy body
if (pDET->frame_status[snd_ch] == FRAME_LOAD)
{
pDET->bit_stream[snd_ch] = (pDET->bit_stream[snd_ch] >> 1) + bit;
pDET->bit_cnt[snd_ch]++;
if (pDET->bit_cnt[snd_ch] == 8)
{
pDET->bit_cnt[snd_ch] = 0;
pDET->FEC_len_cnt[snd_ch]++;
stringAdd(&pDET->FEC_rx_data[snd_ch], &pDET->bit_stream[snd_ch], 1);
if (pDET->FEC_len_cnt[snd_ch] == pDET->FEC_len[snd_ch])
{
// descrambler
scrambler(pDET->FEC_rx_data[snd_ch].Data, pDET->FEC_rx_data[snd_ch].Length);
// deinterleave
pDET->FEC_blk_int[snd_ch] = ((pDET->FEC_len[snd_ch] - 1) / 16) + 1;
linelen = pDET->FEC_rx_data[snd_ch].Length;
memcpy(line, pDET->FEC_rx_data[snd_ch].Data, linelen);
j3 = 1;
for (j1 = 0; j1 < 16; j1++)
{
for (j2 = 0; j2 < pDET->FEC_blk_int[snd_ch]; j2++)
{
if ((j2 * 16 + j1) <= pDET->FEC_len[snd_ch] && j3 <= pDET->FEC_len[snd_ch])
{
pDET->FEC_rx_data[snd_ch].Data[j2 * 16 + j1] = line[j3];
j3++;
}
}
}
// RS-decode
/*
line = pDET->FEC_rx_data[snd_ch];
pDET->FEC_rx_data[snd_ch].Length = 0;
do
{
line1 = copy(line, 1, 16);
size = length(line1);
FillChar(xEncoded, SizeOf(xEncoded), 0);
FillChar(xDecoded, SizeOf(xDecoded), 0);
move(line1[1], xEncoded[0], size);
RS.InitBuffers;
nErr = RS.DecodeRS(xEncoded, xDecoded);
line1 = '';
for j1 = MaxErrors * 2 to size - 1 do line1 = line1 + chr(xDecoded[j1]);
pDET->FEC_rx_data[snd_ch] = FEC_rx_data[snd_ch] + line1;
if nErr >= 0 then FEC_err[snd_ch] = FEC_err[snd_ch] + nErr;
// For MEM-ARQ
fec_code = length(line1) and $7F;
if nErr < 0 then fec_code = fec_code or $80;
fec_data_blk = fec_data_blk + chr(fec_code) + line1;
delete(line, 1, 16);
} while(line.Count);
*/
make_rx_frame_FEC(snd_ch, rcvr_nr, &pDET->FEC_rx_data[snd_ch], &fec_data_blk, pDET->FEC_err[snd_ch]);
pDET->FEC_rx_data[snd_ch].Length = 0;
pDET->frame_status[snd_ch] = FRAME_WAIT;
pDET->FEC_header1[snd_ch][0] = 0;
pDET->FEC_header1[snd_ch][1] = 0;
}
}
}
hdr_ok = FALSE;
// I think FEC_header1[0] and FEC_header1[1] form the 128 bit header
// We look for a pair of flags, but allow a few bits to be wrong
// as FEC may fix them
if (pDET->frame_status[snd_ch] == FRAME_WAIT)
{
j1 = (pDET->FEC_header1[snd_ch][1] >> 16) ^ 0x7E7E;
/*_asm
{
push ax;
push bx;
push cx;
mov ax, 15;
mov bx, j1;
zloop:
mov cx, bx;
and cx, 1;
cmp cx, 1;
jne is_zero;
inc ah; // count damaged bits
is_zero:
shr bx, 1;
dec al;
jnz zloop;
cmp ah, 5; // greater than 4 bits
jnb greater;
mov hdr_ok, TRUE;
greater:
pop cx;
pop bx;
pop ax;
}
*/
}
//if (FEC_header1[snd_ch][1] shr 24 and $FF=$7E) and (frame_status[snd_ch]=FRAME_WAIT) then
if (hdr_ok)
{
// Have up to 4 bits wrong in 7E7E pattern
// Extract header, check crc then try RS
hdr_ok = FALSE;
// if ((pDET->FEC_header1[snd_ch][1] & 0xffff0000) == 0x7E7E0000)
// {
hdr_byte[13] = (pDET->FEC_header1[snd_ch][1] >> 24) & 0xFF;
hdr_byte[14] = (pDET->FEC_header1[snd_ch][1] >> 16) & 0xFF;
if (hdr_byte[13] == 0x7E && hdr_byte[14] == 0x7E)
{
hdr_byte[1] = (pDET->FEC_header1[snd_ch][0] >> 56) & 0xFF;
hdr_byte[2] = (pDET->FEC_header1[snd_ch][0] >> 48) & 0xFF;
hdr_byte[3] = (pDET->FEC_header1[snd_ch][0] >> 40) & 0xFF;
hdr_byte[4] = (pDET->FEC_header1[snd_ch][0] >> 32) & 0xFF;
hdr_byte[5] = (pDET->FEC_header1[snd_ch][0] >> 24) & 0xFF;
hdr_byte[6] = (pDET->FEC_header1[snd_ch][0] >> 16) & 0xFF;
hdr_byte[7] = (pDET->FEC_header1[snd_ch][0] >> 8) & 0xFF;
hdr_byte[8] = pDET->FEC_header1[snd_ch][0] & 0xFF;
hdr_byte[9] = (pDET->FEC_header1[snd_ch][1] >> 56) & 0xFF;
hdr_byte[10] = (pDET->FEC_header1[snd_ch][1] >> 48) & 0xFF;
hdr_byte[11] = (pDET->FEC_header1[snd_ch][1] >> 40) & 0xFF;
hdr_byte[12] = (pDET->FEC_header1[snd_ch][1] >> 32) & 0xFF;
pDET->FEC_len[snd_ch] = hdr_byte[12] << 8 + hdr_byte[11];
line[0] = 0x7E;
line[1] = 0x7E;
line[2] = hdr_byte[12];
line[3] = hdr_byte[11];
crc1 = (hdr_byte[10] << 8) + hdr_byte[9];
crc2 = get_fcs(line, 4);
if (crc1 == crc2)
hdr_ok = TRUE;
Debugprintf("Len %d CRC %x %x", pDET->FEC_len[snd_ch], crc1, crc2);
}
/* if (!hdr_ok)
{
linelen = 0;
for (j1 = 14; j1 > 0; j1-)
line[linelen++] = hdr_byte[j1);
FillChar(xEncoded, SizeOf(xEncoded), 0);
FillChar(xDecoded, SizeOf(xDecoded), 0);
line = copy(&line, 7, 8) + copy(&line, 1, 6);
move(&line[1], xEncoded[0], 14);
RS.InitBuffers;
nErr = RS.DecodeRS(xEncoded, xDecoded);
if (nErr > -1)
{
line.Length = 0;
for (j1 = 8; j1 < 13; j1++)
stringAdd(&line, &xDecoded[j1], 1);
if (line[1] == 0x7E && line[2] == 0x7E)
{
FEC_len[snd_ch] = ord(line[3]) shl 8 + ord(line[4]);
crc1 = (line[5] << 8) + line[6]);
line = copy(line, 1, 4);
crc2 = get_fcs(line, 4);
if (crc1 == crc2)
hdr_ok = TRUE;
}
}
}
*/
if (hdr_ok)
{
pDET->FEC_len[snd_ch] = pDET->FEC_len[snd_ch] & 1023; //limit of length
if (pDET->FEC_len[snd_ch] > 0)
{
pDET->frame_status[snd_ch] = FRAME_LOAD;
pDET->FEC_len_cnt[snd_ch] = 0;
pDET->bit_cnt[snd_ch] = 0;
pDET->FEC_err[snd_ch] = 0;
pDET->FEC_rx_data[snd_ch].Length = 0;
fec_data_blk.Length = 0;
}
}
}
}
// Finalize
if (pDET->AFC_cnt[snd_ch] <= max_cnt)
for (j = pDET->AFC_cnt[snd_ch]; j <= max_cnt + 5; j++)
pDET->AFC_bit_buf[snd_ch][j] = 0.95f*pDET->AFC_bit_buf[snd_ch][j];
pDET->AFC_cnt[snd_ch] = 0;
pDET->AFC_bit_osc[snd_ch] = pDET->AFC_bit_osc[snd_ch] - 1;
}
}
if (fec_ch == NR_FEC_CH)
{
tap_cnt1++;
k++;
}
}
}
dcnt = (dcnt + 1) % n_INTR[snd_ch];
}
}
#endif
void make_rx_frame_FX25(int snd_ch, int rcvr_nr, int emph, string * data)
{
struct TDetector_t * pDET = &DET[emph][rcvr_nr];
word len, crc1, crc2;
len = data->Length;
if (len < pkt_raw_min_len)
{
free(data);
return;
}
crc1 = get_fcs(data->Data, len - 2);
crc2 = (data->Data[len - 1] << 8) | data->Data[len - 2];
if (crc1 != crc2)
{
freeString(data);
return;
}
Debugprintf("FEC Good CRC %x Len %d chan %d rcvr %d emph %d", crc1, len, snd_ch, rcvr_nr, emph);
pDET->rx_decoded = decodedFEC;
if (detect_list[snd_ch].Count > 0)
{
//if detect_list[snd_ch].IndexOf(data)<0 then
if (my_indexof(&detect_list[snd_ch], data) < 0)
{
string * xx = newString();
xx->Length = sprintf(xx->Data, "FX25 %d", centreFreq[snd_ch]);
Add(&detect_list_c[snd_ch], xx);
Add(&detect_list[snd_ch], data);
stringAdd(xx, "", 0);
}
else
{
// Should check if previous decode was Single or MEM and if so replace
Debugprintf("Discarding copy rcvr %d", rcvr_nr);
freeString(data);
}
}
else
{
string * xx = newString();
xx->Length = sprintf(xx->Data, "FX25 %d", centreFreq[snd_ch]);
Add(&detect_list_c[snd_ch], xx);
Add(&detect_list[snd_ch], data);
if (rcvr_nr == 0)
pDET->emph_decoded = 3; //FX.25
}
}
string * decode_FX25_data(TFX25 fx25)
{
integer eras_pos = 0, i, j, len, rs_res;
Byte a, k;
Byte bit, byte_rx, bit_stuff_cnt, bit_cnt = 0, frame_status, bit_stream;
string * data = newString();
int done;
Byte rs_block[256];
int RSOK;
bit_stream = 0;
len = fx25.size - fx25.rs_size;
frame_status = FRAME_WAIT;
done = 0;
// RS FEC
memset(rs_block, 0, 255);
memcpy(rs_block, fx25.data.Data, len);
memcpy(&rs_block[255 - fx25.rs_size], &fx25.data.Data[len], fx25.rs_size);
rs_res = fx25_decode_rs(rs_block, &eras_pos, 0, 0, fx25.rs_size);
if (rs_res == -1)
{
Debugprintf("RS Correction Failed");
return data;
}
if (rs_res == 0)
Debugprintf("RS No Errors");
else
Debugprintf("RS %d Errors Corrected", rs_res);
// need to do ax.25 decode of bit stream
i = 0;
while (i < len)
{
a = rs_block[i];
i++;
for (k = 0; k < 8; k++)
{
bit = a << 7;
a = a >> 1;
bit_stream = (bit_stream >> 1) | bit;
if ((bit_stream & FRAME_FLAG) == FRAME_FLAG && frame_status == FRAME_LOAD)
{
frame_status = FRAME_WAIT;
if (bit_cnt == 6 && data->Length)
return data;
}
if (frame_status == FRAME_LOAD)
{
if (bit_stuff_cnt == 5)
bit_stuff_cnt = 0;
else
{
if (bit == RX_BIT1)
bit_stuff_cnt++;
else
bit_stuff_cnt = 0;
byte_rx = (byte_rx >> 1) | bit;
bit_cnt++;
}
if (bit_cnt == 8)
{
stringAdd(data, &byte_rx, 1);
bit_cnt = 0;
}
}
if ((bit_stream && FRAME_FLAG == FRAME_FLAG) && frame_status == FRAME_WAIT)
{
frame_status = FRAME_LOAD;
bit_cnt = 0;
bit_stuff_cnt = 0;
data->Length = 0;
}
}
}
return data;
}
int FX25_corr[4] = {1, 1, 1, 1};
#define tags_nr 11
#define tt 8
unsigned long long tags[tags_nr] =
{
0xB74DB7DF8A532F3E, 0x26FF60A600CC8FDE, 0xC7DC0508F3D9B09E, 0x8F056EB4369660EE,
0x6E260B1AC5835FAE, 0xFF94DC634F1CFF4E, 0x1EB7B9CDBC09C00E, 0xDBF869BD2DBB1776,
0x3ADB0C13DEAE2836, 0xAB69DB6A543188D6, 0x4A4ABEC4A724B796
};
int sizes[tags_nr] = { 255, 144, 80, 48, 255, 160, 96, 64, 255, 192, 128 };
int rs_sizes[tags_nr] = { 16, 16, 16, 16, 32, 32, 32, 32, 64, 64, 64 };
/*
unsigned char get_corr_arm(unsigned long long n)
{
unsigned char max_corr;
unsigned char result = 255;
int i = 0;
while (i < tags_nr)
{
if (__builtin_popcountll(n ^ tags[i] <= tt))
return i;
}
return 255;
}
*/
char errors;
unsigned char get_corr(unsigned long long val)
{
unsigned long v;
unsigned long long n;
int i = 0;
while (i < tags_nr)
{
n = val ^ tags[i];
v = n;
v = v - ((v >> 1) & 0x55555555); // reuse input as temporary
v = (v & 0x33333333) + ((v >> 2) & 0x33333333); // temp
errors = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; // count
if (errors > tt)
{
i++;
continue;
}
v = n >> 32;
v = v - ((v >> 1) & 0x55555555); // reuse input as temporary
v = (v & 0x33333333) + ((v >> 2) & 0x33333333); // temp
errors += ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; // count
if (errors <= tt)
return i;
i++;
}
return 255;
}
void decode_stream_FSK(int last, int snd_ch, int rcvr_nr, int emph, float * src_buf, float * bit_buf, int buf_size, string * data)
{
int i, k, j, n;
UCHAR bit;
UCHAR raw_bit;
UCHAR raw_bit1;
UCHAR raw_bit2;
float AFC, x, amp, k1, k2;
float baudrate;
float div_bit_afc;
word max_cnt;
float threshold;
float tr;
float Freq;
Byte sample_cnt;
float PkAmp, PkAmpMax = 0, MaxAmp, MinAmp, AverageAmp;
int newpkpos;
float bit_osc;
Byte last_rx_bit, bit_stream, frame_status;
TFX25 fx25;
unsigned long long tag64;
boolean rx_fx25_mode;
// get saved values to local variables to speed up access
struct TDetector_t * pDET = &DET[emph][rcvr_nr];
last_rx_bit = pDET->last_rx_bit[snd_ch];
sample_cnt = pDET->sample_cnt[snd_ch];
PkAmp = pDET->PkAmp[snd_ch];
PkAmpMax = pDET->PkAmpMax[snd_ch];
newpkpos = pDET->newpkpos[snd_ch];
bit_osc = pDET->bit_osc[snd_ch];
MaxAmp = pDET->MaxAmp[snd_ch];
MinAmp = pDET->MinAmp[snd_ch];
AverageAmp = pDET->AverageAmp[snd_ch];
bit_stream = pDET->bit_stream[snd_ch];
frame_status = pDET->frame_status[snd_ch];
fx25 = pDET->fx25[snd_ch];
if (fx25_mode[snd_ch] == FX25_MODE_NONE)
{
rx_fx25_mode = FALSE;
fx25.status = FX25_TAG;
}
else
rx_fx25_mode = TRUE;
tr = dcd_threshold * dcd_corr;
if (last)
{
// Update DCD status
if (dcd_hdr_cnt[snd_ch] == 0)
dcd_on_hdr[snd_ch] = 0;
dcd_bit_cnt[snd_ch] = 0;
}
// src_buf is input samples processed in some way.
// not sure what bit_buf is, but guess bits extracted from samples
// but then why floats ??
baudrate = 300;
div_bit_afc = 1.0f / roundf(BIT_AFC*(RX_Samplerate / 11025.0f));
x = baudrate / RX_Samplerate;
// I guess max_cnt is samples per bit
//was - why + 1 then round??
max_cnt = roundf(RX_Samplerate / baudrate) + 1;
max_cnt = (RX_Samplerate / baudrate);
for (i = 0; i < buf_size; i++)
{
// Seems to be accumulating squares of all samples in the input for one bit period
bit_buf[sample_cnt] = 0.95*bit_buf[sample_cnt] + 0.05*src_buf[i] * src_buf[i];
// Check for NAN
if (bit_buf[sample_cnt] != bit_buf[sample_cnt])
bit_buf[sample_cnt] = 0.0f;
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
// Find the maximum in the synchronization buffer
if (bit_buf[sample_cnt] > PkAmpMax)
{
PkAmp = src_buf[i];
PkAmpMax = bit_buf[sample_cnt];
newpkpos = sample_cnt;
}
sample_cnt++;
bit_osc = bit_osc + x;
// This seems to be how it does samples to bits
if (bit_osc >= 0.99f) // Allow for rounding errors
{
if (sample_cnt <= max_cnt)
for (k = sample_cnt; k <= max_cnt; k++)
bit_buf[k] = 0.95f*bit_buf[k];
k1 = (1.0f * newpkpos) / (sample_cnt - 1);
k2 = pila(k1) - 1;
AFC = div_bit_afc * k2;
if (k1 > 0.5f)
bit_osc = bit_osc + AFC;
else
bit_osc = bit_osc - AFC;
PkAmpMax = 0;
sample_cnt = 0;
// Not sure about this, but if bit_buf gets to NaN it stays there
bit_osc = bit_osc - 1;
//DCD feature
if (last)
{
DCD_LastPkPos[snd_ch] = DCD_LastPkPos[snd_ch] * 0.96f + newpkpos * 0.04f;
DCD_LastPerc[snd_ch] = DCD_LastPerc[snd_ch] * 0.96f + fabsf(newpkpos - DCD_LastPkPos[snd_ch])*0.04f;
if (DCD_LastPerc[snd_ch] >= tr || DCD_LastPerc[snd_ch] < 0.00001f)
dcd_bit_cnt[snd_ch]++;
else
dcd_bit_cnt[snd_ch]--;
}
amp = PkAmp;
if (amp > 0)
raw_bit1 = RX_BIT1;
else
raw_bit1 = RX_BIT0;
//
if (amp > 0)
MaxAmp = MaxAmp * 0.9f + amp*0.1f; //0.9
else
MinAmp = MinAmp * 0.9f + amp*0.1f;
amp = amp - (MaxAmp + MinAmp)*0.5f;
// Bit-detector
AverageAmp = AverageAmp * 0.5f + amp*0.5f;
threshold = 0.5f * AverageAmp;
if (amp > threshold)
raw_bit = RX_BIT1;
else
raw_bit = RX_BIT0;
// 0.75
if (amp > 0.75*AverageAmp)
raw_bit2 = RX_BIT1;
else
raw_bit2 = RX_BIT0;
if (raw_bit != raw_bit2)
raw_bit1 = raw_bit2;
// look for il2p before nrzi
if (il2p_mode[snd_ch])
{
il2p_rec_bit(snd_ch, rcvr_nr, emph, raw_bit);
if (il2p_mode[snd_ch] == IL2P_MODE_ONLY) // Dont try HDLC decode
continue;
}
//NRZI
if (raw_bit == last_rx_bit)
bit = RX_BIT1;
else
bit = RX_BIT0;
last_rx_bit = raw_bit;
//
bit_stream = (bit_stream >> 1) | bit;
// DCD on flag
if (last)
{
if (dcd_hdr_cnt[snd_ch] > 0)
dcd_hdr_cnt[snd_ch]--;
DCD_header[snd_ch] = (DCD_header[snd_ch] >> 1) | (bit << 24);
if (((DCD_header[snd_ch] & 0xFFFF0000) == 0x7E7E0000) ||
((DCD_header[snd_ch] & 0xFFFFFF00) == 0x7E000000) ||
((DCD_header[snd_ch] & 0xFFFFFF00) == 0x00000000))
{
dcd_hdr_cnt[snd_ch] = 48;
dcd_on_hdr[snd_ch] = 1;
}
}
// FX25 process
if (rx_fx25_mode)
{
if (fx25.status == FX25_LOAD)
{
//if last then DCD_on_hdr[snd_ch]:=true;
fx25.byte_rx = (fx25.byte_rx >> 1) | bit;
fx25.bit_cnt++;
if (fx25.bit_cnt == 8)
{
fx25.bit_cnt = 0;
stringAdd(&fx25.data, &fx25.byte_rx, 1);
fx25.size_cnt++;
if (fx25.size == fx25.size_cnt)
{
fx25.status = FX25_TAG;
make_rx_frame_FX25(snd_ch, rcvr_nr, emph, decode_FX25_data(fx25));
//if last and (DCD_hdr_cnt[snd_ch]=0) then DCD_on_hdr[snd_ch]:=false;
}
}
}
else
{
fx25.size = 0;
fx25.tag = (fx25.tag >> 1);
if (bit)
fx25.tag |= 0x8000000000000000;
tag64 = fx25.tag & 0XFFFFFFFFFFFFFFFE;
// FX25 tag correlation
if (FX25_corr[snd_ch])
{
unsigned char res;
res = get_corr(tag64);
if (res < tags_nr)
{
Debugprintf("Got FEC Tag %d Errors %d", res, errors);
fx25.size = sizes[res];
fx25.rs_size = rs_sizes[res];
}
}
else
{
if (tag64 == 0xB74DB7DF8A532F3E)
{
fx25.size = 255;
fx25.rs_size = 16;
}
if (tag64 == 0x26FF60A600CC8FDE)
{
fx25.size = 144;
fx25.rs_size = 16;
}
if (tag64 == 0xC7DC0508F3D9B09E)
{
fx25.size = 80;
fx25.rs_size = 16;
}
if (tag64 == 0x8F056EB4369660EE)
{
fx25.size = 48;
fx25.rs_size = 16;
}
if (tag64 == 0x6E260B1AC5835FAE)
{
fx25.size = 255;
fx25.rs_size = 32;
}
if (tag64 == 0xFF94DC634F1CFF4E)
{
fx25.size = 160;
fx25.rs_size = 32;
}
if (tag64 == 0x1EB7B9CDBC09C00E)
{
fx25.size = 96;
fx25.rs_size = 32;
}
if (tag64 == 0xDBF869BD2DBB1776)
{
fx25.size = 64;
fx25.rs_size = 32;
}
if (tag64 == 0x3ADB0C13DEAE2836)
{
fx25.size = 255;
fx25.rs_size = 64;
}
if (tag64 == 0xAB69DB6A543188D6)
{
fx25.size = 192;
fx25.rs_size = 64;
}
if (tag64 == 0x4A4ABEC4A724B796)
{
fx25.size = 128;
fx25.rs_size = 64;
}
}
if (fx25.size != 0)
{
fx25.status = FX25_LOAD;
fx25.data.Length = 0;
fx25.bit_cnt = 0;
fx25.size_cnt = 0;
centreFreq[snd_ch] = GuessCentreFreq(snd_ch);
}
}
}
//
if (bit_stream == 0xFF || bit_stream == 0x7F || bit_stream == 0xFE)
{
// All have 7 or more 1 bits
if (frame_status == FRAME_LOAD)
{
// Have started receiving frame
// Debugprintf("Frame Abort len= %d bits", pDET->raw_bits[snd_ch].Length);
frame_status = FRAME_WAIT;
// Raw stream init
pDET->raw_bits[snd_ch].Length = 0;
pDET->raw_bits1[snd_ch].Length = 0;
pDET->last_nrzi_bit[snd_ch] = raw_bit;
// dcd_hdr_cnt[snd_ch] = 48;
// dcd_on_hdr[snd_ch] = 1;
if (last)
chk_dcd1(snd_ch, buf_size);
}
continue;
}
if (((bit_stream & FRAME_FLAG) == FRAME_FLAG) && (frame_status == FRAME_LOAD))
{
frame_status = FRAME_WAIT;
if (pDET->raw_bits[snd_ch].Length == 7) // Another flag
{
// Raw stream init
pDET->raw_bits[snd_ch].Length = 0;
pDET->raw_bits1[snd_ch].Length = 0;
pDET->last_nrzi_bit[snd_ch] = raw_bit;
}
if (pDET->raw_bits[snd_ch].Length > 7)
{
//b Debugprintf("Got Frame len = %d AFC %f", pDET->raw_bits[snd_ch].Length, AFC);
centreFreq[snd_ch] = GuessCentreFreq(snd_ch);
make_rx_frame(snd_ch, rcvr_nr, emph, pDET->last_nrzi_bit[snd_ch], &pDET->raw_bits[snd_ch], &pDET->raw_bits1[snd_ch]);
}
}
if (frame_status == FRAME_LOAD)
{
//Raw stream
if (pDET->raw_bits[snd_ch].Length < 36873)
{
if (raw_bit == RX_BIT1)
stringAdd(&pDET->raw_bits[snd_ch], "1", 1);
else
stringAdd(&pDET->raw_bits[snd_ch], "0", 1);
}
if (pDET->raw_bits1[snd_ch].Length < 36873)
{
if (raw_bit1 == RX_BIT1)
stringAdd(&pDET->raw_bits1[snd_ch], "1", 1);
else
stringAdd(&pDET->raw_bits1[snd_ch], "0", 1);
}
//
}
if (((bit_stream & FRAME_FLAG) == FRAME_FLAG) && (frame_status == FRAME_WAIT))
{
frame_status = FRAME_LOAD;
// Raw stream init
pDET->raw_bits[snd_ch].Length = 0;
pDET->raw_bits1[snd_ch].Length = 0;
pDET->last_nrzi_bit[snd_ch] = raw_bit;
// Debugprintf("New Frame");
}
}
}
pDET->sample_cnt[snd_ch] = sample_cnt;
pDET->PkAmp[snd_ch] = PkAmp;
pDET->PkAmpMax[snd_ch] = PkAmpMax;
pDET->newpkpos[snd_ch] = newpkpos;
pDET->bit_osc[snd_ch] = bit_osc;
pDET->MaxAmp[snd_ch] = MaxAmp;
pDET->MinAmp[snd_ch] = MinAmp;
pDET->AverageAmp[snd_ch] = AverageAmp;
pDET->bit_stream[snd_ch] = bit_stream;
pDET->frame_status[snd_ch] = frame_status;
pDET->last_rx_bit[snd_ch] = last_rx_bit;
pDET->fx25[snd_ch] = fx25;
}
void decode_stream_BPSK(int last, int snd_ch, int rcvr_nr, int emph, float * srcI, float * srcQ, float * bit_buf, int buf_size, string * data)
{
float agc_fast = 0.01f;
float agc_fast1 = 1 - agc_fast;
float agc_slow = agc_fast / 4;
float agc_slow1 = 1 - agc_slow;
int i, k, j, n;
Byte dibit, bit;
single afc, x, amp, k1, k2;
single baudrate;
single div_bit_afc;
word max_cnt;
single threshold;
single tr;
single KCorr, AngleCorr, angle, muxI1, muxQ1, muxI2, muxQ2, sumIQ1, sumIQ2;
Byte newpkpos, sample_cnt;
single PkAmpI, PkAmpQ, PkAmpMax, PSK_AGC;
single PSK_IZ1, PSK_QZ1;
single bit_osc;
Byte bit_stuff_cnt, last_rx_bit, frame_status, bit_cnt, bit_stream, byte_rx;
// get saved values to local variables to speed up access
struct TDetector_t * pDET = &DET[emph][rcvr_nr];
// global -> local
AngleCorr = pDET->AngleCorr[snd_ch];
bit_stuff_cnt = pDET->bit_stuff_cnt[snd_ch];
sample_cnt = pDET->sample_cnt[snd_ch];
PSK_AGC = pDET->PSK_AGC[snd_ch];
PkAmpI = pDET->PkAmpI[snd_ch];
PkAmpQ = pDET->PkAmpQ[snd_ch];
PkAmpMax = pDET->PkAmpMax[snd_ch];
newpkpos = pDET->newpkpos[snd_ch];
PSK_IZ1 = pDET->PSK_IZ1[snd_ch];
PSK_QZ1 = pDET->PSK_QZ1[snd_ch];
bit_osc = pDET->bit_osc[snd_ch];
frame_status = pDET->frame_status[snd_ch];
bit_cnt = pDET->bit_cnt[snd_ch];
bit_stream = pDET->bit_stream[snd_ch];
byte_rx = pDET->byte_rx[snd_ch];
//
tr = dcd_threshold * dcd_corr;
if (last)
{
// Update DCD status
if (dcd_hdr_cnt[snd_ch] == 0)
dcd_on_hdr[snd_ch] = 0;
dcd_bit_cnt[snd_ch] = 0;
}
baudrate = 300;
div_bit_afc = 1.0f / round(BIT_AFC*(RX_Samplerate / 11025));
x = baudrate / RX_Samplerate;
// max_cnt = round(RX_Samplerate / baudrate) + 1;
max_cnt = round(RX_Samplerate / baudrate) + 1;
for (i = 0; i < buf_size - 1; i++)
{
// AGC
amp = sqrt(srcI[i] * srcI[i] + srcQ[i] * srcQ[i]);
if (amp > PSK_AGC)
PSK_AGC = PSK_AGC * agc_fast1 + amp*agc_fast;
else
PSK_AGC = PSK_AGC * agc_slow1 + amp*agc_slow;
if (PSK_AGC > 1)
{
srcI[i] = srcI[i] / PSK_AGC;
srcQ[i] = srcQ[i] / PSK_AGC;
amp = amp / PSK_AGC; // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> SQRT
}
//
bit_buf[sample_cnt] = 0.95*bit_buf[sample_cnt] + 0.05*amp;
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
if (bit_buf[sample_cnt] > PkAmpMax)
{
PkAmpI = srcI[i];
PkAmpQ = srcQ[i];
PkAmpMax = bit_buf[sample_cnt];
newpkpos = sample_cnt;
}
sample_cnt++;
bit_osc = bit_osc + x;
if (bit_osc >= 1)
{
if (sample_cnt <= max_cnt)
for (k = sample_cnt; k <= max_cnt; k++)
bit_buf[k] = 0.95*bit_buf[k];
k1 = (1.0f * newpkpos) / (sample_cnt - 1);
k2 = pila(k1) - 1;
afc = div_bit_afc * k2;
if (k1 > 0.5f)
bit_osc = bit_osc + afc;
else
bit_osc = bit_osc - afc;
PkAmpMax = 0;
sample_cnt = 0;
bit_osc = bit_osc - 1;
//DCD feature
if (last)
{
DCD_LastPkPos[snd_ch] = DCD_LastPkPos[snd_ch] * 0.96f + newpkpos * 0.04f;
DCD_LastPerc[snd_ch] = DCD_LastPerc[snd_ch] * 0.96f + fabsf(newpkpos - DCD_LastPkPos[snd_ch])*0.04f;
if (DCD_LastPerc[snd_ch] >= tr || DCD_LastPerc[snd_ch] < 0.00001f)
dcd_bit_cnt[snd_ch] = dcd_bit_cnt[snd_ch] + 1;
else
dcd_bit_cnt[snd_ch] = dcd_bit_cnt[snd_ch] - 1;
}
// Bit-detector
muxI1 = PkAmpI * PSK_IZ1;
muxI2 = PkAmpQ * PSK_IZ1;
muxQ1 = PkAmpQ * PSK_QZ1;
muxQ2 = PkAmpI * PSK_QZ1;
sumIQ1 = muxI1 + muxQ1;
sumIQ2 = muxI2 - muxQ2;
angle = atan2f(sumIQ2, sumIQ1);
PSK_IZ1 = PkAmpI;
PSK_QZ1 = PkAmpQ;
2023-09-12 21:38:15 +01:00
float Mag = sqrtf(powf(PSK_IZ1, 2) + powf(PSK_QZ1, 2));
2023-09-04 19:06:44 +01:00
// Phase corrector
if (fabsf(angle) < PI5)
AngleCorr = AngleCorr * 0.95f - angle * 0.05f;
else
{
if (angle > 0)
AngleCorr = AngleCorr * 0.95f + (pi - angle)*0.05f;
else
AngleCorr = AngleCorr * 0.95f - (pi + angle)*0.05f;
}
angle = angle + AngleCorr;
//
if (fabsf(angle) < PI5)
bit = RX_BIT1;
else
bit = RX_BIT0;
//
2023-09-12 21:38:15 +01:00
// is this the best place to store phase for constellation?
// only for ilp2 for now
2023-09-04 19:06:44 +01:00
if (il2p_mode[snd_ch])
2023-09-12 21:38:15 +01:00
{
struct il2p_context_s * il2p = il2p_context[snd_ch][rcvr_nr][emph];
if (il2p && il2p->state > IL2P_SEARCHING)
{
Phases[snd_ch][rcvr_nr][emph][nPhases[snd_ch][rcvr_nr][emph]] = angle;
Mags[snd_ch][rcvr_nr][emph][nPhases[snd_ch][rcvr_nr][emph]++] = Mag;
if (nPhases[snd_ch][rcvr_nr][emph] > 4090)
nPhases[snd_ch][rcvr_nr][emph]--;
}
2023-09-04 19:06:44 +01:00
il2p_rec_bit(snd_ch, rcvr_nr, emph, bit);
if (il2p_mode[snd_ch] == IL2P_MODE_ONLY) // Dont try HDLC decode
continue;
2023-09-12 21:38:15 +01:00
}
2023-09-04 19:06:44 +01:00
if (bit)
stats[1]++;
else
stats[0]++;
bit_stream = (bit_stream >> 1) | bit;
// DCD on flag
if (last)
{
if (dcd_hdr_cnt[snd_ch] > 0)
dcd_hdr_cnt[snd_ch]--;
DCD_header[snd_ch] = (DCD_header[snd_ch] >> 1) | (bit << 24);
if (((DCD_header[snd_ch] & 0xFFFF0000) == 0x7E7E0000) ||
((DCD_header[snd_ch] & 0xFFFFFF00) == 0x7E000000) ||
((DCD_header[snd_ch] & 0xFFFFFF00) == 0x00000000))
{
dcd_hdr_cnt[snd_ch] = 48;
dcd_on_hdr[snd_ch] = 1;
}
}
// I think Andy looks for both flag and abort here. I think it would be
// clearer to detect abort separately
// This may not be optimun but should work
if (bit_stream == 0xFF || bit_stream == 0x7F || bit_stream == 0xFE)
{
// All have 7 or more 1 bits
if (frame_status == FRAME_LOAD)
{
// Have started receiving frame
// Debugprintf("Frame Abort len= %d bytes", data->Length);
frame_status = FRAME_WAIT;
// Raw stream init
bit_cnt = 0;
bit_stuff_cnt = 0;
data->Length = 0;
}
continue;
}
if ((bit_stream & FRAME_FLAG) == FRAME_FLAG && frame_status == FRAME_LOAD)
{
frame_status = FRAME_WAIT;
// if (bit_cnt == 6)
make_rx_frame_PSK(snd_ch, rcvr_nr, emph, data);
}
if (frame_status == FRAME_LOAD)
{
if (bit_stuff_cnt == 5)
bit_stuff_cnt = 0;
else
{
if (bit == RX_BIT1)
bit_stuff_cnt++;
else
bit_stuff_cnt = 0;
byte_rx = (byte_rx >> 1) + bit;
bit_cnt++;
}
if (bit_cnt == 8)
{
if (data->Length < 4097)
stringAdd(data, &byte_rx, 1);
bit_cnt = 0;
}
}
if ((bit_stream & FRAME_FLAG) == FRAME_FLAG && frame_status == FRAME_WAIT)
{
frame_status = FRAME_LOAD;
bit_cnt = 0;
bit_stuff_cnt = 0;
data->Length = 0;
}
}
}
pDET->sample_cnt[snd_ch] = sample_cnt;
pDET->PSK_AGC[snd_ch] = PSK_AGC;
pDET->PkAmpI[snd_ch] = PkAmpI;
pDET->PkAmpQ[snd_ch] = PkAmpQ;
pDET->PkAmpMax[snd_ch] = PkAmpMax;
pDET->newpkpos[snd_ch] = newpkpos;
pDET->PSK_IZ1[snd_ch] = PSK_IZ1;
pDET->PSK_QZ1[snd_ch] = PSK_QZ1;
pDET->bit_osc[snd_ch] = bit_osc;
pDET->frame_status[snd_ch] = frame_status;
pDET->bit_cnt[snd_ch] = bit_cnt;
pDET->bit_stream[snd_ch] = bit_stream;
pDET->byte_rx[snd_ch] = byte_rx;
pDET->bit_stuff_cnt[snd_ch] = bit_stuff_cnt;
pDET->AngleCorr[snd_ch] = AngleCorr;
}
void decode_stream_QPSK(int last, int snd_ch, int rcvr_nr, int emph, float * srcI, float * srcQ, float * bit_buf, int buf_size, string * data)
{
float agc_fast = 0.01f;
float agc_fast1 = 1 - agc_fast;
float agc_slow = agc_fast / 4;
float agc_slow1 = 1 - agc_slow;
int i, k, j, n;
Byte dibit = 0, bit;
single afc, x, amp, k1, k2;
single baudrate;
single div_bit_afc;
word max_cnt;
single threshold;
single tr;
single KCorr = 0, AngleCorr, angle, muxI1, muxQ1, muxI2, muxQ2, sumIQ1, sumIQ2;
Byte newpkpos, sample_cnt;
single PkAmpI, PkAmpQ, PkAmpMax, PSK_AGC;
single PSK_IZ1, PSK_QZ1;
single bit_osc;
Byte bit_stuff_cnt, last_rx_bit, frame_status, bit_cnt, bit_stream, byte_rx;
// get saved values to local variables to speed up access
struct TDetector_t * pDET = &DET[emph][rcvr_nr];
bit_stuff_cnt = pDET->bit_stuff_cnt[snd_ch];
last_rx_bit = pDET->last_rx_bit[snd_ch];
sample_cnt = pDET->sample_cnt[snd_ch];
PSK_AGC = pDET->PSK_AGC[snd_ch];
PkAmpI = pDET->PkAmpI[snd_ch];
PkAmpQ = pDET->PkAmpQ[snd_ch];
PkAmpMax = pDET->PkAmpMax[snd_ch];
newpkpos = pDET->newpkpos[snd_ch];
PSK_IZ1 = pDET->PSK_IZ1[snd_ch];
PSK_QZ1 = pDET->PSK_QZ1[snd_ch];
bit_osc = pDET->bit_osc[snd_ch];
frame_status = pDET->frame_status[snd_ch];
bit_cnt = pDET->bit_cnt[snd_ch];
bit_stream = pDET->bit_stream[snd_ch];
byte_rx = pDET->byte_rx[snd_ch];
AngleCorr = pDET->AngleCorr[snd_ch];
tr = dcd_threshold * dcd_corr;
if (last)
{
// Update DCD status
if (dcd_hdr_cnt[snd_ch] == 0)
dcd_on_hdr[snd_ch] = 0;
dcd_bit_cnt[snd_ch] = 0;
}
// I think this works because of upsampling - 1200 = 4x 300 and we upsampled by 4
baudrate = 300;
div_bit_afc = 1.0f / roundf(BIT_AFC*(RX_Samplerate / 11025.0f));
x = baudrate / RX_Samplerate;
max_cnt = roundf(RX_Samplerate / baudrate) + 1;
for (i = 0; i < buf_size; i++)
{
// AGC
amp = sqrt(srcI[i] * srcI[i] + srcQ[i] * srcQ[i]);
if (amp > PSK_AGC)
PSK_AGC = PSK_AGC * agc_fast1 + amp * agc_fast;
else
PSK_AGC = PSK_AGC * agc_slow1 + amp * agc_slow;
if (PSK_AGC > 1)
{
srcI[i] = srcI[i] / PSK_AGC;
srcQ[i] = srcQ[i] / PSK_AGC;
amp = amp / PSK_AGC; // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> SQRT
}
bit_buf[sample_cnt] = 0.95 * bit_buf[sample_cnt] + 0.05 * amp;
// Check for NAN
if (bit_buf[sample_cnt] != bit_buf[sample_cnt])
bit_buf[sample_cnt] = 0.0f;
// Find the maximum in the synchronization buffer
if (bit_buf[sample_cnt] > PkAmpMax)
{
PkAmpI = srcI[i];
PkAmpQ = srcQ[i];
PkAmpMax = bit_buf[sample_cnt];
newpkpos = sample_cnt;
}
sample_cnt++;
bit_osc = bit_osc + x;
// This seems to be how it does samples to bits
if (bit_osc >= 1)
{
if (sample_cnt <= max_cnt)
for (k = sample_cnt; k <= max_cnt; k++)
bit_buf[k] = 0.95*bit_buf[k];
k1 = (1.0f * newpkpos) / (sample_cnt - 1);
k2 = pila(k1) - 1;
afc = div_bit_afc * k2;
if (k1 > 0.5)
bit_osc = bit_osc + afc;
else
bit_osc = bit_osc - afc;
PkAmpMax = 0;
sample_cnt = 0;
bit_osc = bit_osc - 1;
//DCD feature
if (last)
{
DCD_LastPkPos[snd_ch] = DCD_LastPkPos[snd_ch] * 0.96 + newpkpos * 0.04;
DCD_LastPerc[snd_ch] = DCD_LastPerc[snd_ch] * 0.96 + fabsf(newpkpos - DCD_LastPkPos[snd_ch])*0.04;
if (DCD_LastPerc[snd_ch] >= tr || DCD_LastPerc[snd_ch] < 0.00001f)
dcd_bit_cnt[snd_ch] = dcd_bit_cnt[snd_ch] + 1;
else
dcd_bit_cnt[snd_ch] = dcd_bit_cnt[snd_ch] - 1;
}
// Bit-detector
muxI1 = PkAmpI * PSK_IZ1;
muxI2 = PkAmpQ * PSK_IZ1;
muxQ1 = PkAmpQ * PSK_QZ1;
muxQ2 = PkAmpI * PSK_QZ1;
sumIQ1 = muxI1 + muxQ1;
sumIQ2 = muxI2 - muxQ2;
angle = atan2f(sumIQ2, sumIQ1);
PSK_IZ1 = PkAmpI;
PSK_QZ1 = PkAmpQ;
2023-09-12 21:38:15 +01:00
float Mag = sqrtf(powf(PSK_IZ1, 2) + powf(PSK_QZ1, 2));
2023-09-04 19:06:44 +01:00
if (angle > pi || angle < -pi)
angle = angle;
if (modem_mode[snd_ch] == MODE_PI4QPSK)
{
// Phase corrector
// I'm pretty sure we send 4 phases starting 45 degrees from 0 so .25, .75 - .25 - .75
if (angle >= 0 && angle <= PI5)
KCorr = angle - PI25;
if (angle > PI5)
KCorr = angle - PI75;
if (angle < -PI5)
KCorr = angle + PI75;
if (angle < 0 && angle >= -PI5)
KCorr = angle + PI25;
AngleCorr = AngleCorr * 0.95f - KCorr * 0.05f;
angle = angle + AngleCorr;
if (angle >= 0 && angle <= PI5)
{
dibit = qpsk_set[snd_ch].rx[0]; // 00 - 0
qpsk_set[snd_ch].count[0]++;
}
else if (angle > PI5)
{
dibit = qpsk_set[snd_ch].rx[1]; // 01 - PI/2
qpsk_set[snd_ch].count[1]++;
}
else if (angle < -PI5)
{
dibit = qpsk_set[snd_ch].rx[2]; // 10 - PI
qpsk_set[snd_ch].count[2]++;
}
else if (angle < 0 && angle >= -PI5)
{
dibit = qpsk_set[snd_ch].rx[3]; // 11 - -PI/2
qpsk_set[snd_ch].count[3]++;
}
}
else
{
2023-09-12 21:38:15 +01:00
// "Normal" QPSK
2023-09-04 19:06:44 +01:00
// Phase corrector
// I think this sends 0 90 180 270
if (fabsf(angle) < PI25)
KCorr = angle;
if (angle >= PI25 && angle <= PI75)
KCorr = angle - PI5;
if (angle <= -PI25 && angle >= -PI75)
KCorr = angle + PI5;
if (fabsf(angle) > PI75)
{
if (angle > 0)
KCorr = -M_PI + angle;
else
KCorr = M_PI + angle;
}
AngleCorr = AngleCorr * 0.95 - KCorr * 0.05;
angle = angle + AngleCorr;
if (fabsf(angle) < PI25)
dibit = qpsk_set[snd_ch].rx[0]; // 00 - 0
else if (angle >= PI25 && angle <= PI75)
dibit = qpsk_set[snd_ch].rx[1]; // 01 - PI/2
else if (fabsf(angle) > PI75)
dibit = qpsk_set[snd_ch].rx[2]; // 10 - PI
else if (angle <= -PI25 && angle >= -PI75)
dibit = qpsk_set[snd_ch].rx[3]; // 11 - -PI/2
}
for (j = 0; j < 2; j++)
{
dibit = dibit << 1;
2023-09-12 21:38:15 +01:00
// is this the best place to store phase for constellation?
// only for ilp2 for now
if (il2p_mode[snd_ch])
{
struct il2p_context_s * il2p = il2p_context[snd_ch][rcvr_nr][emph];
if (il2p && il2p->state > IL2P_SEARCHING)
{
Phases[snd_ch][rcvr_nr][emph][nPhases[snd_ch][rcvr_nr][emph]] = angle;
Mags[snd_ch][rcvr_nr][emph][nPhases[snd_ch][rcvr_nr][emph]++] = Mag;
if (nPhases[snd_ch][rcvr_nr][emph] > 4090)
nPhases[snd_ch][rcvr_nr][emph]--;
}
il2p_rec_bit(snd_ch, rcvr_nr, emph, (dibit & RX_BIT1));
if (il2p_mode[snd_ch] == IL2P_MODE_ONLY) // Dont try HDLC decode
continue;
}
2023-09-04 19:06:44 +01:00
// NRZI
if (last_rx_bit == (dibit & RX_BIT1))
bit = RX_BIT1;
else
bit = RX_BIT0;
last_rx_bit = dibit & RX_BIT1;
bit_stream = (bit_stream >> 1) | bit;
// DCD on flag
if (last)
{
if (dcd_hdr_cnt[snd_ch] > 0)
dcd_hdr_cnt[snd_ch]--;
DCD_header[snd_ch] = (DCD_header[snd_ch] >> 1) | (bit << 24);
if (((DCD_header[snd_ch] & 0xFFFF0000) == 0x7E7E0000) ||
((DCD_header[snd_ch] & 0xFFFFFF00) == 0x7E000000) ||
((DCD_header[snd_ch] & 0xFFFFFF00) == 0x00000000))
{
dcd_hdr_cnt[snd_ch] = 48;
dcd_on_hdr[snd_ch] = 1;
}
}
// I think Andy looks for both flag and abort here. I think it would be
// clearer to detect abort separately
// This may not be optimun but should work
if (bit_stream == 0xFF || bit_stream == 0x7F || bit_stream == 0xFE)
{
// All have 7 or more 1 bits
if (frame_status == FRAME_LOAD)
{
// Have started receiving frame
// Debugprintf("Frame Abort len= %d bytes", data->Length);
frame_status = FRAME_WAIT;
// Raw stream init
bit_cnt = 0;
bit_stuff_cnt = 0;
data->Length = 0;
}
continue;
}
if ((bit_stream & FRAME_FLAG) == FRAME_FLAG && frame_status == FRAME_LOAD)
{
frame_status = FRAME_WAIT;
// if (bit_cnt == 6)
make_rx_frame_PSK(snd_ch, rcvr_nr, emph, data);
}
if (frame_status == FRAME_LOAD)
{
if (bit_stuff_cnt == 5)
bit_stuff_cnt = 0;
else
{
if (bit == RX_BIT1)
bit_stuff_cnt++;
else
bit_stuff_cnt = 0;
byte_rx = (byte_rx >> 1) + bit;
bit_cnt++;
}
if (bit_cnt == 8)
{
if (data->Length < 4097)
stringAdd(data, &byte_rx, 1);
bit_cnt = 0;
}
}
if ((bit_stream & FRAME_FLAG) == FRAME_FLAG && frame_status == FRAME_WAIT)
{
frame_status = FRAME_LOAD;
bit_cnt = 0;
bit_stuff_cnt = 0;
data->Length = 0;
}
}
}
}
pDET->sample_cnt[snd_ch] = sample_cnt;
pDET->PSK_AGC[snd_ch] = PSK_AGC;
pDET->PkAmpI[snd_ch] = PkAmpI;
pDET->PkAmpQ[snd_ch] = PkAmpQ;
pDET->PkAmpMax[snd_ch] = PkAmpMax;
pDET->newpkpos[snd_ch] = newpkpos;
pDET->PSK_IZ1[snd_ch] = PSK_IZ1;
pDET->PSK_QZ1[snd_ch] = PSK_QZ1;
pDET->bit_osc[snd_ch] = bit_osc;
pDET->frame_status[snd_ch] = frame_status;
pDET->bit_cnt[snd_ch] = bit_cnt;
pDET->bit_stream[snd_ch] = bit_stream;
pDET->byte_rx[snd_ch] = byte_rx;
pDET->last_rx_bit[snd_ch] = last_rx_bit;
pDET->bit_stuff_cnt[snd_ch] = bit_stuff_cnt;
pDET->AngleCorr[snd_ch] = AngleCorr;
}
void decode_stream_8PSK(int last, int snd_ch, int rcvr_nr, int emph, float * srcI, float * srcQ, float * bit_buf, int buf_size, string * data)
{
float agc_fast = 0.01f;
float agc_fast1 = 1 - agc_fast;
float agc_slow = agc_fast / 4;
float agc_slow1 = 1 - agc_slow;
int i, k, j, n;
Byte tribit = 0, bit;
single afc, x, amp, k1, k2;
single baudrate;
single div_bit_afc;
word max_cnt;
single threshold;
single tr;
single KCorr = 0, AngleCorr, angle, muxI1, muxQ1, muxI2, muxQ2, sumIQ1, sumIQ2;
Byte newpkpos, sample_cnt;
single PkAmpI, PkAmpQ, PkAmpMax, PSK_AGC;
single PSK_IZ1, PSK_QZ1;
single bit_osc;
Byte bit_stuff_cnt, last_rx_bit, frame_status, bit_cnt, bit_stream, byte_rx;
// get saved values to local variables to speed up access
struct TDetector_t * pDET = &DET[emph][rcvr_nr];
bit_stuff_cnt = pDET->bit_stuff_cnt[snd_ch];
last_rx_bit = pDET->last_rx_bit[snd_ch];
sample_cnt = pDET->sample_cnt[snd_ch];
PSK_AGC = pDET->PSK_AGC[snd_ch];
PkAmpI = pDET->PkAmpI[snd_ch];
PkAmpQ = pDET->PkAmpQ[snd_ch];
PkAmpMax = pDET->PkAmpMax[snd_ch];
newpkpos = pDET->newpkpos[snd_ch];
PSK_IZ1 = pDET->PSK_IZ1[snd_ch];
PSK_QZ1 = pDET->PSK_QZ1[snd_ch];
bit_osc = pDET->bit_osc[snd_ch];
frame_status = pDET->frame_status[snd_ch];
bit_cnt = pDET->bit_cnt[snd_ch];
bit_stream = pDET->bit_stream[snd_ch];
byte_rx = pDET->byte_rx[snd_ch];
AngleCorr = pDET->AngleCorr[snd_ch];
tr = dcd_threshold * dcd_corr;
if (last)
{
// Update DCD status
if (dcd_hdr_cnt[snd_ch] == 0)
dcd_on_hdr[snd_ch] = 0;
dcd_bit_cnt[snd_ch] = 0;
}
2023-09-12 21:38:15 +01:00
// Not sure how this works
if (tx_baudrate[snd_ch] == 300)
baudrate = 300;
else
baudrate = 1600 / 6;
2023-09-04 19:06:44 +01:00
div_bit_afc = 1.0 / round(BIT_AFC*(RX_Samplerate / 11025));
x = baudrate / RX_Samplerate;
max_cnt = round(RX_Samplerate / baudrate) + 1;
for (i = 0; i < buf_size; i++)
{
// AGC
amp = sqrt(srcI[i] * srcI[i] + srcQ[i] * srcQ[i]);
if (amp > PSK_AGC)
PSK_AGC = PSK_AGC * agc_fast1 + amp*agc_fast;
else
PSK_AGC = PSK_AGC * agc_slow1 + amp*agc_slow;
if (PSK_AGC > 1)
{
srcI[i] = srcI[i] / PSK_AGC;
srcQ[i] = srcQ[i] / PSK_AGC;
amp = amp / PSK_AGC; // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> SQRT
}
bit_buf[sample_cnt] = 0.95*bit_buf[sample_cnt] + 0.05*amp;
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
if (bit_buf[sample_cnt] > PkAmpMax)
{
PkAmpI = srcI[i];
PkAmpQ = srcQ[i];
PkAmpMax = bit_buf[sample_cnt];
newpkpos = sample_cnt;
}
//
sample_cnt++;
bit_osc = bit_osc + x;
if (bit_osc >= 1)
2023-09-12 21:38:15 +01:00
{
2023-09-04 19:06:44 +01:00
if (sample_cnt <= max_cnt)
for (k = sample_cnt; k <= max_cnt; k++)
bit_buf[k] = 0.95*bit_buf[k];
k1 = (1.0f * newpkpos) / (sample_cnt - 1);
k2 = pila(k1) - 1;
afc = div_bit_afc * k2;
if (k1 > 0.5)
bit_osc = bit_osc + afc;
else
bit_osc = bit_osc - afc;
PkAmpMax = 0;
sample_cnt = 0;
bit_osc = bit_osc - 1;
//DCD feature
if (last)
{
DCD_LastPkPos[snd_ch] = DCD_LastPkPos[snd_ch] * 0.96 + newpkpos * 0.04;
DCD_LastPerc[snd_ch] = DCD_LastPerc[snd_ch] * 0.96 + abs(newpkpos - DCD_LastPkPos[snd_ch])*0.04;
if (DCD_LastPerc[snd_ch] >= tr || DCD_LastPerc[snd_ch] < 0.00001)
dcd_bit_cnt[snd_ch] = dcd_bit_cnt[snd_ch] + 1;
else
dcd_bit_cnt[snd_ch] = dcd_bit_cnt[snd_ch] - 1;
}
// Bit-detector
muxI1 = PkAmpI * PSK_IZ1;
muxI2 = PkAmpQ * PSK_IZ1;
muxQ1 = PkAmpQ * PSK_QZ1;
muxQ2 = PkAmpI * PSK_QZ1;
sumIQ1 = muxI1 + muxQ1;
sumIQ2 = muxI2 - muxQ2;
angle = atan2f(sumIQ2, sumIQ1);
PSK_IZ1 = PkAmpI;
PSK_QZ1 = PkAmpQ;
2023-09-12 21:38:15 +01:00
float Mag = sqrtf(powf(PSK_IZ1, 2) + powf(PSK_QZ1, 2));
2023-09-04 19:06:44 +01:00
// Phase corrector
if (fabsf(angle) < PI125)
KCorr = angle;
if (angle >= PI125 && angle <= PI375)
KCorr = angle - PI25;
if (angle >= PI375 && angle < PI625)
KCorr = angle - PI5;
if (angle >= PI625 && angle <= PI875)
KCorr = angle - PI75;
if (angle <= -PI125 && angle > -PI375)
KCorr = angle + PI25;
if (angle <= -PI375 && angle > -PI625)
KCorr = angle + PI5;
if (angle <= -PI625 && angle >= -PI875)
KCorr = angle + PI75;
if (fabsf(angle) > PI875)
{
if (angle > 0)
KCorr = angle - pi;
else
KCorr = angle + pi;
}
AngleCorr = AngleCorr * 0.95 - KCorr * 0.05;
angle = angle + AngleCorr;
2023-09-12 21:38:15 +01:00
2023-09-04 19:06:44 +01:00
if (fabsf(angle) < PI125)
tribit = 1;
if (angle >= PI125 && angle < PI375)
tribit = 0;
if (angle >= PI375 && angle < PI625)
tribit = 2;
if (angle >= PI625 && angle <= PI875)
tribit = 3;
if (fabsf(angle) > PI875)
tribit = 7;
if (angle <= -PI625 && angle >= -PI875)
tribit = 6;
if (angle <= -PI375 && angle > -PI625)
tribit = 4;
if (angle <= -PI125 && angle > -PI375)
tribit = 5;
tribit = tribit << 4;
for (j = 0; j < 3; j++)
{
tribit = tribit << 1;
2023-09-12 21:38:15 +01:00
// look for il2p before nrzi
// is this the best place to store phase for constellation?
// only for ilp2 for now
if (il2p_mode[snd_ch])
{
struct il2p_context_s * il2p = il2p_context[snd_ch][rcvr_nr][emph];
if (il2p && il2p->state > IL2P_SEARCHING)
{
Phases[snd_ch][rcvr_nr][emph][nPhases[snd_ch][rcvr_nr][emph]] = angle;
Mags[snd_ch][rcvr_nr][emph][nPhases[snd_ch][rcvr_nr][emph]++] = Mag;
if (nPhases[snd_ch][rcvr_nr][emph] > 4090)
nPhases[snd_ch][rcvr_nr][emph]--;
}
il2p_rec_bit(snd_ch, rcvr_nr, emph, tribit & RX_BIT1);
if (il2p_mode[snd_ch] == IL2P_MODE_ONLY) // Dont try HDLC decode
continue;
}
2023-09-04 19:06:44 +01:00
//NRZI
if (last_rx_bit == (tribit & RX_BIT1))
bit = RX_BIT1;
else
bit = RX_BIT0;
last_rx_bit = tribit & RX_BIT1;
//
bit_stream = (bit_stream >> 1) | bit;
// DCD on flag
if (last)
{
if (dcd_hdr_cnt[snd_ch] > 0)
dcd_hdr_cnt[snd_ch]--;
DCD_header[snd_ch] = (DCD_header[snd_ch] >> 1) | (bit << 24);
if (((DCD_header[snd_ch] & 0xFFFF0000) == 0x7E7E0000) ||
((DCD_header[snd_ch] & 0xFFFFFF00) == 0x7E000000) ||
((DCD_header[snd_ch] & 0xFFFFFF00) == 0x00000000))
{
dcd_hdr_cnt[snd_ch] = 48;
dcd_on_hdr[snd_ch] = 1;
}
}
// I think Andy looks for both flag and abort here. I think it would be
// clearer to detect abort separately
// This may not be optimun but should work
if (bit_stream == 0xFF || bit_stream == 0x7F || bit_stream == 0xFE)
{
// All have 7 or more 1 bits
if (frame_status == FRAME_LOAD)
{
// Have started receiving frame
// Debugprintf("Frame Abort len= %d bytes", data->Length);
frame_status = FRAME_WAIT;
// Raw stream init
bit_cnt = 0;
bit_stuff_cnt = 0;
data->Length = 0;
}
continue;
}
if ((bit_stream & FRAME_FLAG) == FRAME_FLAG && frame_status == FRAME_LOAD)
{
frame_status = FRAME_WAIT;
if (bit_cnt == 6)
make_rx_frame_PSK(snd_ch, rcvr_nr, emph, data);
}
if (frame_status == FRAME_LOAD)
{
if (bit_stuff_cnt == 5)
bit_stuff_cnt = 0;
else
{
if (bit == RX_BIT1)
bit_stuff_cnt++;
else
bit_stuff_cnt = 0;
byte_rx = (byte_rx >> 1) + bit;
bit_cnt++;
}
if (bit_cnt == 8)
{
if (data->Length < 4097)
stringAdd(data, &byte_rx, 1);
bit_cnt = 0;
}
}
if ((bit_stream & FRAME_FLAG) == FRAME_FLAG && frame_status == FRAME_WAIT)
{
frame_status = FRAME_LOAD;
bit_cnt = 0;
bit_stuff_cnt = 0;
data->Length = 0;
}
}
}
}
pDET->sample_cnt[snd_ch] = sample_cnt;
pDET->PSK_AGC[snd_ch] = PSK_AGC;
pDET->PkAmpI[snd_ch] = PkAmpI;
pDET->PkAmpQ[snd_ch] = PkAmpQ;
pDET->PkAmpMax[snd_ch] = PkAmpMax;
pDET->newpkpos[snd_ch] = newpkpos;
pDET->PSK_IZ1[snd_ch] = PSK_IZ1;
pDET->PSK_QZ1[snd_ch] = PSK_QZ1;
pDET->bit_osc[snd_ch] = bit_osc;
pDET->frame_status[snd_ch] = frame_status;
pDET->bit_cnt[snd_ch] = bit_cnt;
pDET->bit_stream[snd_ch] = bit_stream;
pDET->byte_rx[snd_ch] = byte_rx;
pDET->last_rx_bit[snd_ch] = last_rx_bit;
pDET->bit_stuff_cnt[snd_ch] = bit_stuff_cnt;
pDET->AngleCorr[snd_ch] = AngleCorr;
}
/*
////////////////////////////////////////////////////////
function blackman(i,tap: word): single;
var
a0,a1,a2,a: single;
{
a = 0.16;
a0 = (1-a)/2;
a1 = 1/2;
a2 = a/2;
result = a0-a1*cos(2*pi*i/(tap-1))+a2*cos(4*pi*i/(tap-1));
}
function nuttal(i,tap: word): single;
var
a0,a1,a2,a3: single;
{
a0 = 0.355768;
a1 = 0.487396;
a2 = 0.144232;
a3 = 0.012604;
result = a0-a1*cos(2*pi*i/(tap-1))+a2*cos(4*pi*i/(tap-1))-a3*cos(6*pi*i/(tap-1));
}
function flattop(i,tap: word): single;
var
a0,a1,a2,a3,a4: single;
{
a0 = 1;
a1 = 1.93;
a2 = 1.29;
a3 = 0.388;
a4 = 0.032;
result = a0-a1*cos(2*pi*i/(tap-1))+a2*cos(4*pi*i/(tap-1))-a3*cos(6*pi*i/(tap-1))+a4*cos(8*pi*i/(tap-1));
}
*/
void init_BPF(float freq1, float freq2, unsigned short tap, float samplerate, float * buf)
{
unsigned short tap1, i;
float tap12, ham, acc1, acc2;
float bpf_l[2048];
float bpf_h[2048];
float itap12, pi2, x1, x2;
acc1 = 0;
acc2 = 0;
tap1 = tap - 1;
tap12 = tap1 / 2;
pi2 = 2 * pi;
x1 = pi2 * freq1 / samplerate;
x2 = pi2 * freq2 / samplerate;
for (i = 0; i <= tap1; i++)
{
// float x = (pi2 * i) / tap1;
// x = cosf(x);
// ham = 0.5 - 0.5 * x;
ham = 0.5 - 0.5 * cosf((pi2 * i) / tap1); //old
if (ham != ham) // check for NaN
ham = 0.0f;
itap12 = i - tap12;
if (itap12 == 0)
{
bpf_l[i] = x1;
bpf_h[i] = x2;
}
else
{
bpf_l[i] = sinf(x1*itap12) / itap12;
bpf_h[i] = sinf(x2*itap12) / itap12;
}
bpf_l[i] = bpf_l[i] * ham;
bpf_h[i] = bpf_h[i] * ham;
acc1 = acc1 + bpf_l[i];
acc2 = acc2 + bpf_h[i];
}
for (i = 0; i <= tap1; i++)
{
bpf_l[i] = bpf_l[i] / acc1;
bpf_h[i] = -(bpf_h[i] / acc2);
};
bpf_h[tap / 2] = bpf_h[tap / 2] + 1;
for (i = 0; i <= tap; i++)
{
buf[i] = -(bpf_l[i] + bpf_h[i]);
}
buf[tap / 2] = buf[tap / 2] + 1;
}
void init_LPF(float width, unsigned short tap, float samplerate, float * buf)
{
float acc1, ham;
unsigned short tap1, i;
float itap12, tap12, x1, pi2;
acc1 = 0;
tap1 = tap - 1;
tap12 = tap1 / 2;
pi2 = 2 * pi;
x1 = pi2 * width / samplerate;
for (i = 0; i <= tap1; i++)
{
ham = 0.53836f - 0.46164f * cosf(pi2 * i / tap1); //old
if (ham != ham) // check for NaN
ham = 0.0f;
//ham = 0.5-0.5*cos(pi2*i/tap1);
//ham = 0.5*(1-cos(pi2*i/tap1)); //hann
//ham = blackman(i,tap); //blackman
//ham = nuttal(i,tap);
itap12 = i - tap12;
if (itap12 == 0)
buf[i] = x1;
else
buf[i] = sinf(x1*itap12) / itap12;
buf[i] = buf[i] * ham;
acc1 = acc1 + buf[i];
}
for (i = 0; i <= tap1; i++)
buf[i] = buf[i] / acc1;
}
void make_core_INTR(UCHAR snd_ch)
{
float width;
width = roundf(RX_Samplerate / 2);
n_INTR[snd_ch] = 1;
switch (speed[snd_ch])
{
case SPEED_300:
width = roundf(RX_Samplerate / 2);
n_INTR[snd_ch] = 1;
break;
case SPEED_P300:
width = roundf(RX_Samplerate / 2);
n_INTR[snd_ch] = 1;
break;
2023-09-12 21:38:15 +01:00
case SPEED_Q300:
case SPEED_8PSK300:
width = roundf(RX_Samplerate / 2);
n_INTR[snd_ch] = 1;
break;
2023-09-04 19:06:44 +01:00
case SPEED_600:
width = roundf(RX_Samplerate / 4);
n_INTR[snd_ch] = 2;
break;
case SPEED_P600:
width = roundf(RX_Samplerate / 4);
n_INTR[snd_ch] = 2;
break;
case SPEED_1200:
width = roundf(RX_Samplerate / 8);
n_INTR[snd_ch] = 4;
break;
case SPEED_P1200:
width = roundf(RX_Samplerate / 8);
n_INTR[snd_ch] = 4;
break;
2023-09-12 21:38:15 +01:00
// case SPEED_Q1200:
// width = roundf(RX_Samplerate / 8);
// n_INTR[snd_ch] = 4;
// break;
2023-09-04 19:06:44 +01:00
case SPEED_Q2400:
width = 300;
n_INTR[snd_ch] = 4;
break; //8
case SPEED_DW2400:
width = 300;
n_INTR[snd_ch] = 4;
break;
2023-09-12 21:38:15 +01:00
case SPEED_2400V26B:
2023-09-04 19:06:44 +01:00
width = 300;
n_INTR[snd_ch] = 4;
break;
case SPEED_MP400:
width = round(RX_Samplerate / 8);
n_INTR[snd_ch] = 4;
break;
case SPEED_Q3600:
width = 300;
n_INTR[snd_ch] = 6;//12
break;
case SPEED_8P4800:
2023-09-12 21:38:15 +01:00
2023-09-04 19:06:44 +01:00
width = 100;
n_INTR[snd_ch] = 6;
break;
case SPEED_2400:
width = round(RX_Samplerate / 16);
n_INTR[snd_ch] = 8;
break;
case SPEED_P2400:
width = round(RX_Samplerate / 16);
n_INTR[snd_ch] = 8;
break;
case SPEED_Q4800:
width = 300;
n_INTR[snd_ch] = 8;//16
break;
}
init_LPF(width, INTR_tap[snd_ch], RX_Samplerate, INTR_core[snd_ch]);
}
void make_core_LPF(UCHAR snd_ch, short width)
{
if (modem_mode[snd_ch] == MODE_MPSK)
{
init_LPF(width, LPF_tap[snd_ch], RX_Samplerate / n_INTR[snd_ch], LPF_core[snd_ch]);
init_LPF(rx_baudrate[snd_ch], LPF_tap[snd_ch], RX_Samplerate / n_INTR[snd_ch], AFC_core[snd_ch]);
}
else
init_LPF(width, LPF_tap[snd_ch], RX_Samplerate, LPF_core[snd_ch]);
}
void make_core_BPF(UCHAR snd_ch, short freq, short width)
{
float old_freq, width2, rx_samplerate2, freq1, freq2;
UCHAR i;
freq = freq + rxOffset + chanOffset[snd_ch];
// I want to run decoders lowest to highest to simplify my display,
// so filters must be calculated in same order
int offset = -(RCVR[snd_ch] * rcvr_offset[snd_ch]); // lowest
rx_samplerate2 = 0.5 * RX_Samplerate;
width2 = 0.5 * width;
old_freq = freq;
for (i = 0; i <= RCVR[snd_ch] << 1; i++)
{
freq = old_freq + offset;
freq1 = freq - width2;
freq2 = freq + width2;
if (freq1 < 1)
freq1 = 1;
if (freq2 < 1)
freq2 = 1;
if (freq1 > rx_samplerate2)
freq1 = rx_samplerate2;
if (freq2 > rx_samplerate2)
freq2 = rx_samplerate2;
init_BPF(freq1, freq2, BPF_tap[snd_ch], RX_Samplerate, &DET[0][i].BPF_core[snd_ch][0]);
offset += rcvr_offset[snd_ch];
}
}
void make_core_TXBPF(UCHAR snd_ch, float freq, float width)
{
float freq1, freq2;
freq1 = freq - width / 2;
freq2 = freq + width / 2;
if (freq1 < 1)
freq1 = 1;
if (freq2 < 1)
freq2 = 1;
if (freq1 > TX_Samplerate / 2)
freq1 = TX_Samplerate / 2;
if (freq2 > TX_Samplerate / 2)
freq2 = TX_Samplerate / 2;
init_BPF(freq1, freq2, tx_BPF_tap[snd_ch], TX_Samplerate, tx_BPF_core[snd_ch]);
}
void interpolation(int snd_ch, int rcvr_nr, int emph, float * dest_buf, float * src_buf, int buf_size)
{
int n_intr1, buf_size1, k, i, j;
float buf[8192];
buf_size1 = buf_size - 1;
n_intr1 = n_INTR[snd_ch] - 1;
k = 0;
for (i = 0; i <= buf_size1; i++)
{
for (j = 0; j <= n_intr1; j++)
{
buf[k] = src_buf[i];
k++;
}
}
FIR_filter(buf, buf_size *n_INTR[snd_ch], INTR_tap[snd_ch], INTR_core[snd_ch], dest_buf, DET[emph][rcvr_nr].prev_INTR_buf[snd_ch]);
}
void interpolation_PSK(int snd_ch, int rcvr_nr, int emph, float * destI, float * destQ, float * srcI, float * srcQ, int buf_size)
{
word n_intr1, buf_size1, k, i, j;
single bufI[8192], bufQ[8192];
buf_size1 = buf_size - 1;
n_intr1 = n_INTR[snd_ch] - 1;
k = 0;
for (i = 0; i <= buf_size1; i++)
{
for (j = 0; j <= n_intr1; j++)
{
bufI[k] = srcI[i];
bufQ[k] = srcQ[i];
k++;
}
}
FIR_filter(bufI, buf_size*n_INTR[snd_ch], INTR_tap[snd_ch], INTR_core[snd_ch], destI, DET[emph][rcvr_nr].prev_INTRI_buf[snd_ch]);
FIR_filter(bufQ, buf_size*n_INTR[snd_ch], INTR_tap[snd_ch], INTR_core[snd_ch], destQ, DET[emph][rcvr_nr].prev_INTRQ_buf[snd_ch]);
}
void FSK_Demodulator(int snd_ch, int rcvr_nr, int emph, int last)
{
// filtered samples in src_BPF_buf, output in src_Loop_buf
Mux3(snd_ch,rcvr_nr,emph, &DET[0][rcvr_nr].src_BPF_buf[snd_ch][0], &LPF_core[snd_ch][0], &DET[emph][rcvr_nr].src_Loop_buf[snd_ch][0],
&DET[emph][rcvr_nr].prev_LPF1I_buf[snd_ch][0], &DET[emph][rcvr_nr].prev_LPF1Q_buf[snd_ch][0], LPF_tap[snd_ch], rx_bufsize);
if (n_INTR[snd_ch] > 1)
{
interpolation(snd_ch, rcvr_nr, emph, DET[emph][rcvr_nr].src_INTR_buf[snd_ch], DET[emph][rcvr_nr].src_Loop_buf[snd_ch], rx_bufsize);
decode_stream_FSK(last, snd_ch, rcvr_nr, emph, &DET[emph][rcvr_nr].src_INTR_buf[snd_ch][0], &DET[emph][rcvr_nr].bit_buf[snd_ch][0], rx_bufsize*n_INTR[snd_ch], &DET[emph][rcvr_nr].rx_data[snd_ch]);
}
else
decode_stream_FSK(last,snd_ch,rcvr_nr,emph,DET[emph][rcvr_nr].src_Loop_buf[snd_ch], &DET[emph][rcvr_nr].bit_buf[snd_ch][0], rx_bufsize, &DET[emph][rcvr_nr].rx_data[snd_ch]);
}
void BPSK_Demodulator(int snd_ch, int rcvr_nr, int emph, int last)
{
Mux3_PSK(snd_ch, rcvr_nr, emph,
DET[0][rcvr_nr].src_BPF_buf[snd_ch],
LPF_core[snd_ch],
DET[emph][rcvr_nr].src_LPF1I_buf[snd_ch],
DET[emph][rcvr_nr].src_LPF1Q_buf[snd_ch],
DET[emph][rcvr_nr].prev_LPF1I_buf[snd_ch],
DET[emph][rcvr_nr].prev_LPF1Q_buf[snd_ch],
LPF_tap[snd_ch], rx_bufsize);
if (n_INTR[snd_ch] > 1)
{
interpolation_PSK(snd_ch, rcvr_nr, emph,
DET[emph][rcvr_nr].src_INTRI_buf[snd_ch],
DET[emph][rcvr_nr].src_INTRQ_buf[snd_ch],
DET[emph][rcvr_nr].src_LPF1I_buf[snd_ch],
DET[emph][rcvr_nr].src_LPF1Q_buf[snd_ch], rx_bufsize);
decode_stream_BPSK(last, snd_ch, rcvr_nr, emph,
DET[emph][rcvr_nr].src_INTRI_buf[snd_ch],
DET[emph][rcvr_nr].src_INTRQ_buf[snd_ch],
DET[emph][rcvr_nr].bit_buf[snd_ch],
rx_bufsize*n_INTR[snd_ch],
&DET[emph][rcvr_nr].rx_data[snd_ch]);
}
else
decode_stream_BPSK(last, snd_ch, rcvr_nr, emph,
DET[emph][rcvr_nr].src_LPF1I_buf[snd_ch],
DET[emph][rcvr_nr].src_LPF1Q_buf[snd_ch],
DET[emph][rcvr_nr].bit_buf[snd_ch],
rx_bufsize,
&DET[emph][rcvr_nr].rx_data[snd_ch]);
}
void QPSK_Demodulator(int snd_ch, int rcvr_nr, int emph, int last)
{
Mux3_PSK(snd_ch, rcvr_nr, emph,
DET[0][rcvr_nr].src_BPF_buf[snd_ch],
LPF_core[snd_ch],
DET[emph][rcvr_nr].src_LPF1I_buf[snd_ch],
DET[emph][rcvr_nr].src_LPF1Q_buf[snd_ch],
DET[emph][rcvr_nr].prev_LPF1I_buf[snd_ch],
DET[emph][rcvr_nr].prev_LPF1Q_buf[snd_ch],
LPF_tap[snd_ch], rx_bufsize);
if (n_INTR[snd_ch] > 1)
{
interpolation_PSK(snd_ch, rcvr_nr, emph,
DET[emph][rcvr_nr].src_INTRI_buf[snd_ch],
DET[emph][rcvr_nr].src_INTRQ_buf[snd_ch],
DET[emph][rcvr_nr].src_LPF1I_buf[snd_ch],
DET[emph][rcvr_nr].src_LPF1Q_buf[snd_ch], rx_bufsize);
decode_stream_QPSK(last, snd_ch, rcvr_nr, emph,
DET[emph][rcvr_nr].src_INTRI_buf[snd_ch],
DET[emph][rcvr_nr].src_INTRQ_buf[snd_ch],
DET[emph][rcvr_nr].bit_buf[snd_ch],
rx_bufsize*n_INTR[snd_ch],
&DET[emph][rcvr_nr].rx_data[snd_ch]);
}
else decode_stream_QPSK(last, snd_ch, rcvr_nr, emph,
DET[emph][rcvr_nr].src_LPF1I_buf[snd_ch],
DET[emph][rcvr_nr].src_LPF1Q_buf[snd_ch],
DET[emph][rcvr_nr].bit_buf[snd_ch],
rx_bufsize,
&DET[emph][rcvr_nr].rx_data[snd_ch]);
}
void PSK8_Demodulator(int snd_ch, int rcvr_nr, int emph, boolean last)
{
Mux3_PSK(snd_ch, rcvr_nr, emph,
DET[0][rcvr_nr].src_BPF_buf[snd_ch],
LPF_core[snd_ch],
DET[emph][rcvr_nr].src_LPF1I_buf[snd_ch],
DET[emph][rcvr_nr].src_LPF1Q_buf[snd_ch],
DET[emph][rcvr_nr].prev_LPF1I_buf[snd_ch],
DET[emph][rcvr_nr].prev_LPF1Q_buf[snd_ch],
LPF_tap[snd_ch], rx_bufsize);
if (n_INTR[snd_ch] > 1)
{
interpolation_PSK(snd_ch, rcvr_nr, emph,
DET[emph][rcvr_nr].src_INTRI_buf[snd_ch],
DET[emph][rcvr_nr].src_INTRQ_buf[snd_ch],
DET[emph][rcvr_nr].src_LPF1I_buf[snd_ch],
DET[emph][rcvr_nr].src_LPF1Q_buf[snd_ch], rx_bufsize);
decode_stream_8PSK(last, snd_ch, rcvr_nr, emph,
DET[emph][rcvr_nr].src_INTRI_buf[snd_ch],
DET[emph][rcvr_nr].src_INTRQ_buf[snd_ch],
DET[emph][rcvr_nr].bit_buf[snd_ch],
rx_bufsize*n_INTR[snd_ch],
&DET[emph][rcvr_nr].rx_data[snd_ch]);
}
else
decode_stream_8PSK(last, snd_ch, rcvr_nr, emph,
DET[emph][rcvr_nr].src_LPF1I_buf[snd_ch],
DET[emph][rcvr_nr].src_LPF1Q_buf[snd_ch],
DET[emph][rcvr_nr].bit_buf[snd_ch],
rx_bufsize,
&DET[emph][rcvr_nr].rx_data[snd_ch]);
}
void Demodulator(int snd_ch, int rcvr_nr, float * src_buf, int last, int xcenter)
{
// called once per decoder (current one in rcvr_nr)
int i, k;
string rec_code;
UCHAR emph;
int found;
string * s_emph;
struct TDetector_t * pDET = &DET[0][rcvr_nr];
// looks like this filters to src_BPF_buf
FIR_filter(src_buf, rx_bufsize, BPF_tap[snd_ch], pDET->BPF_core[snd_ch], pDET->src_BPF_buf[snd_ch], pDET->prev_BPF_buf[snd_ch]);
// AFSK demodulator
if (modem_mode[snd_ch] == MODE_FSK)
{
if (emph_all[snd_ch])
{
for (emph = 1; emph <= nr_emph; emph++)
FSK_Demodulator(snd_ch, rcvr_nr, emph, FALSE);
FSK_Demodulator(snd_ch, rcvr_nr, 0, last);
}
else
FSK_Demodulator(snd_ch, rcvr_nr, emph_db[snd_ch], last);
}
// BPSK demodulator
if (modem_mode[snd_ch] == MODE_BPSK)
{
if (emph_all[snd_ch])
{
for (emph = 1; emph <= nr_emph; emph++)
BPSK_Demodulator(snd_ch, rcvr_nr, emph, FALSE);
BPSK_Demodulator(snd_ch, rcvr_nr, 0, last);
}
else
BPSK_Demodulator(snd_ch, rcvr_nr, emph_db[snd_ch], last);
}
// QPSK demodulator
if (modem_mode[snd_ch] == MODE_QPSK || modem_mode[snd_ch] == MODE_PI4QPSK)
{
if (emph_all[snd_ch])
{
for (emph = 1; emph <= nr_emph; emph++)
QPSK_Demodulator(snd_ch, rcvr_nr, emph, FALSE);
QPSK_Demodulator(snd_ch, rcvr_nr, 0, last);
}
else
QPSK_Demodulator(snd_ch, rcvr_nr, emph_db[snd_ch], last);
}
2023-09-12 21:38:15 +01:00
// 8PSK demodulator
2023-09-04 19:06:44 +01:00
if (modem_mode[snd_ch]==MODE_8PSK)
{
if (emph_all[snd_ch])
{
for (emph = 1; emph <= nr_emph; emph++)
PSK8_Demodulator(snd_ch, rcvr_nr, emph, FALSE);
PSK8_Demodulator(snd_ch, rcvr_nr, 0, last);
}
else
PSK8_Demodulator(snd_ch,rcvr_nr,emph_db[snd_ch],last);
}
// MPSK demodulator
if (modem_mode[snd_ch] == MODE_MPSK)
{
decode_stream_MPSK(snd_ch, rcvr_nr, DET[0][rcvr_nr].src_BPF_buf[snd_ch], rx_bufsize, last);
}
// I think this handles multiple decoders and passes packet on to next level
// Packet manager
if (last)
2023-09-12 21:38:15 +01:00
ProcessRXFrames(snd_ch);
}
2023-09-04 19:06:44 +01:00
2023-09-12 21:38:15 +01:00
void ProcessRXFrames(int snd_ch)
{
boolean fecflag = 0;
char indicators[5] = "-$#F+"; // None, Single, MEM, FEC, Normal
2023-09-04 19:06:44 +01:00
2023-09-12 21:38:15 +01:00
// Work out which decoder and which emph settings worked.
2023-09-04 19:06:44 +01:00
2024-10-29 22:45:21 +00:00
if (snd_ch < 0 || snd_ch > 3)
2023-09-12 21:38:15 +01:00
return;
2023-09-04 19:06:44 +01:00
2023-09-12 21:38:15 +01:00
if (detect_list[snd_ch].Count > 0) // no point if nothing decoded
{
char decoded[32] = "";
char indicators[5] = "-$#F+"; // None, Single, MEM, FEC, Normal
char s_emph[4] = "";
int emph[4] = { 0 };
char report[32] = "";
int il2perrors = 255;
2023-09-04 19:06:44 +01:00
2023-09-12 21:38:15 +01:00
// The is one DET for each Decoder for each Emph setting
struct TDetector_t * pDET;
int i = 0, j, found;
int maxemph = nr_emph;
for (i = 0; i <= nr_emph; i++)
{
for (j = 0; j <= RCVR[snd_ch] * 2; j++)
2023-09-04 19:06:44 +01:00
{
2023-09-12 21:38:15 +01:00
pDET = &DET[i][j];
2023-09-04 19:06:44 +01:00
2023-09-12 21:38:15 +01:00
if (pDET->rx_decoded > decoded[j]) // Better than other one (| is higher than F)
decoded[j] = pDET->rx_decoded;
2023-09-04 19:06:44 +01:00
2023-09-12 21:38:15 +01:00
if (pDET->emph_decoded > emph[i])
emph[i] = pDET->emph_decoded;
2023-09-04 19:06:44 +01:00
2023-09-12 21:38:15 +01:00
if (il2perrors > pDET->errors)
il2perrors = pDET->errors;
2023-09-04 19:06:44 +01:00
2023-09-12 21:38:15 +01:00
pDET->rx_decoded = 0;
pDET->emph_decoded = 0; // Ready for next time
pDET->errors = 255;
2023-09-04 19:06:44 +01:00
}
2023-09-12 21:38:15 +01:00
if (emph_all[snd_ch] == 0)
break;
}
2023-09-04 19:06:44 +01:00
2023-09-12 21:38:15 +01:00
decoded[j] = 0;
2023-09-04 19:06:44 +01:00
2023-09-12 21:38:15 +01:00
for (j--; j >= 0; j--)
decoded[j] = indicators[decoded[j]];
2023-09-04 19:06:44 +01:00
2023-09-12 21:38:15 +01:00
if (emph_all[snd_ch])
{
for (i = 0; i <= nr_emph; i++)
2023-09-04 19:06:44 +01:00
{
2023-09-12 21:38:15 +01:00
s_emph[i] = indicators[emph[i]];
2023-09-04 19:06:44 +01:00
}
2023-09-12 21:38:15 +01:00
sprintf(report, "%s][%s", s_emph, decoded);
}
2023-09-04 19:06:44 +01:00
2023-09-12 21:38:15 +01:00
else
strcpy(report, decoded);
2023-09-04 19:06:44 +01:00
2023-09-12 21:38:15 +01:00
if (detect_list_c[snd_ch].Items[0]->Length)
{
if (il2perrors < 255 && il2perrors > 0)
sprintf(detect_list_c[snd_ch].Items[0]->Data, "%s-%d", detect_list_c[snd_ch].Items[0]->Data, il2perrors);
2023-09-04 19:06:44 +01:00
2023-09-12 21:38:15 +01:00
strcat(report, "][");
strcat(report, detect_list_c[snd_ch].Items[0]->Data);
}
2023-09-04 19:06:44 +01:00
2023-09-12 21:38:15 +01:00
if (detect_list[snd_ch].Count > 0)
{
for (i = 0; i < detect_list[snd_ch].Count; i++)
2023-09-04 19:06:44 +01:00
{
2023-09-12 21:38:15 +01:00
found = 0;
2023-09-04 19:06:44 +01:00
2023-09-12 21:38:15 +01:00
// if (detect_list_l[snd_ch].Count > 0)
// if (my_indexof(&detect_list_l[snd_ch], detect_list[snd_ch].Items[i]) > -1)
// found = 1;
2023-09-04 19:06:44 +01:00
2023-09-12 21:38:15 +01:00
if (found == 0)
{
if (modem_mode[snd_ch] == MODE_MPSK)
2023-09-04 19:06:44 +01:00
{
2023-09-12 21:38:15 +01:00
// analiz_frame(snd_ch, detect_list[snd_ch].Items[i]->Data, [snd_ch].Items[i]->Data + ' dF: ' + FloatToStrF(DET[0, 0].AFC_dF[snd_ch], ffFixed, 0, 1));
}
else
{
analiz_frame(snd_ch, detect_list[snd_ch].Items[i], report, fecflag);
2023-09-04 19:06:44 +01:00
}
}
2023-09-12 21:38:15 +01:00
}
2023-09-04 19:06:44 +01:00
2023-09-12 21:38:15 +01:00
// Cancel FX25 decode
2023-09-04 19:06:44 +01:00
2023-09-12 21:38:15 +01:00
if (fx25_mode[snd_ch] != FX25_MODE_NONE)
{
int e;
2023-09-04 19:06:44 +01:00
2023-09-12 21:38:15 +01:00
for (i = 0; i < 16; i++)
for (e = 0; e <= nr_emph; e++)
DET[e][i].fx25[snd_ch].status = FX25_TAG;
2023-09-04 19:06:44 +01:00
}
2023-09-12 21:38:15 +01:00
}
2023-09-04 19:06:44 +01:00
2023-09-12 21:38:15 +01:00
// Assign(&detect_list_l[snd_ch], &detect_list[snd_ch]); // Duplicate detect_list to detect_list_l
2023-09-04 19:06:44 +01:00
2023-09-12 21:38:15 +01:00
Clear(&detect_list[snd_ch]);
Clear(&detect_list_c[snd_ch]);
2023-09-04 19:06:44 +01:00
}
2023-09-12 21:38:15 +01:00
chk_dcd1(snd_ch, rx_bufsize);
2023-09-04 19:06:44 +01:00
}
string * memory_ARQ(TStringList * buf, string * data)
{
unsigned char crc[32];
string * s;
string * frame;
word k, len, i;
Byte zeros, ones;
TStringList need_frames;
s = data;
CreateStringList(&need_frames);
len = data->Length;
memcpy(crc, &data->Data[data->Length - 18], 18);
if (buf->Count > 0)
{
for (i = 0; i < buf->Count; i++)
{
if (buf->Items[i]->Length == len)
if (memcmp(&buf->Items[i]->Data[len - 18], crc, 18) == 0)
Add(&need_frames, buf->Items[i]);
}
}
if (need_frames.Count > 2)
{
for (i = 0; i < len - 18; i++)
{
zeros = 0;
ones = 0;
for (k = 0; k < need_frames.Count; k++)
{
frame = need_frames.Items[k];
if (frame->Data[i] == '1') ones++; else zeros++;
}
if (ones > zeros) s->Data[i] = '1'; else s->Data[i] = '0';
}
}
// Clear(&need_frames);
return s;
}